Determine the scale factors for an orthogonal coordinate system (s,t,v) whose coordinates are related to the cartesian coordinates by the following
equations
x=2st, y=s^2-t^2, z=v
Also write down an expression for the square of the arc element.
Answers
Answered by
0
Given the
relationship between two coordinate systems (x,y,z) and (s,t,v) as
x = 2 s t , y = s² - t² z = v
Solving the first two equations, we get:
s = x/2t => t² = x²/4t² - y => 4 t⁴ + 4 t² y - x² = 0
=> t² = [ - y +- √(y² + x²)] / 2 = (√(x²+y²) - y) / 2 --- (1)
Then, s² = y + t² = (√(x²+y²) + y) / 2 ------- (2)
This is how we calculate the
we differentiate them
dx = 2 t ds + 2 s dt ---- (3)
dy = 2 s ds - 2 t dt ---- (4)
dz = dv
Infinitesimally small distance dS in (x,y,z) is :
Solving the first two equations:
-dx 2t 2s -dx
-dy 2s -2t -dy
ds = (2 t dx + 2 s dy) / (4s² + 4t²) = (t dx + s dy) /2(s²+t²)
dt = (-2t dy +2s dx) / (4s² +4t²) = (s dx - t dy)/ 2(s²+t²)
Infinitely small distance in (s,t,v) system is = dS':
(dS')² = (ds)² + (dt)² + (dv)²
= dv² + [ t²dx²+s²dy²+2st dx dy + s²dx²+t² dy-2st dx dy] /4(t²+s²)²
= (dv)² + [ (dx)² + (dy)² ] / [4 (s²+t²)]
From (1) and (2) we have s² + t² = √(x²+y²)
So the scaling factors for linear distances from (x,y,z) to (s,t,v) are given by :
ds = 1/ √ √ [4√(x²+y²) ] * dx
dt = 1/ √ √ [4√(x²+y²) ] * dy
dv = 1 * dz
=========================
Expression for square of the arc length is = (dS)²
= (dx)² + (dy)² + (dz)² use equations (3) and (4)
= (dv)² + 4 t² (ds)² + 4s² dt² + 8 t s ds dt + 4 s² ds² + 4 t² dt² - 8 s t ds dt
(dS)² = (dv)² + 4 [ (ds)² + (dt)² ] [s² + t²] ------ (5)
This is the expression for arc length dS. Then Integration has to be done for obtaining the length of an arc.
x = 2 s t , y = s² - t² z = v
Solving the first two equations, we get:
s = x/2t => t² = x²/4t² - y => 4 t⁴ + 4 t² y - x² = 0
=> t² = [ - y +- √(y² + x²)] / 2 = (√(x²+y²) - y) / 2 --- (1)
Then, s² = y + t² = (√(x²+y²) + y) / 2 ------- (2)
This is how we calculate the
we differentiate them
dx = 2 t ds + 2 s dt ---- (3)
dy = 2 s ds - 2 t dt ---- (4)
dz = dv
Infinitesimally small distance dS in (x,y,z) is :
Solving the first two equations:
-dx 2t 2s -dx
-dy 2s -2t -dy
ds = (2 t dx + 2 s dy) / (4s² + 4t²) = (t dx + s dy) /2(s²+t²)
dt = (-2t dy +2s dx) / (4s² +4t²) = (s dx - t dy)/ 2(s²+t²)
Infinitely small distance in (s,t,v) system is = dS':
(dS')² = (ds)² + (dt)² + (dv)²
= dv² + [ t²dx²+s²dy²+2st dx dy + s²dx²+t² dy-2st dx dy] /4(t²+s²)²
= (dv)² + [ (dx)² + (dy)² ] / [4 (s²+t²)]
From (1) and (2) we have s² + t² = √(x²+y²)
So the scaling factors for linear distances from (x,y,z) to (s,t,v) are given by :
ds = 1/ √ √ [4√(x²+y²) ] * dx
dt = 1/ √ √ [4√(x²+y²) ] * dy
dv = 1 * dz
=========================
Expression for square of the arc length is = (dS)²
= (dx)² + (dy)² + (dz)² use equations (3) and (4)
= (dv)² + 4 t² (ds)² + 4s² dt² + 8 t s ds dt + 4 s² ds² + 4 t² dt² - 8 s t ds dt
(dS)² = (dv)² + 4 [ (ds)² + (dt)² ] [s² + t²] ------ (5)
This is the expression for arc length dS. Then Integration has to be done for obtaining the length of an arc.
Similar questions