Math, asked by grovesyasmina, 3 months ago

Determine the shortest distance from the point D(5, 4) to the line represented by 3x+5y-4 =0

Answers

Answered by mathdude500
2

Given Question :-

  • Determine the shortest distance from the point D(5, 4) to the line represented by 3x+5y-4 =0.

Answer

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a \: line \: 3x + 5y - 4 = 0} \\ &\sf{a \: point \: (5, 4)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find  -   \begin{cases} &\sf{shortest \: distance \: }  \end{cases}\end{gathered}\end{gathered}

Concept Used :-

Let us consider a line ax + by + c = 0 and let us consider a point (p, q), then shortest distance between line and point is given by

\tt \:d \:  =  \: \dfrac{ |ap \:  +  \: bq \:  +  \: c| }{ \sqrt{ {a}^{2} +  {b}^{2}  } }

\large\underline\purple{\bold{Solution :-  }}

Given

A line 3x + 5y - 4 = 0 and point (5, 4).

Let d be the shortest distance between 3x + 5y - 4 = 0 and a point (5, 4).

Then,

 \bf \: d \:  =  \sf \: \dfrac{ |3  \times 5 + 5 \times 4 - 4| }{ \sqrt{ {3}^{2}  +  {5}^{2} } }

 :  \implies \bf \: d \:  =  \sf \: \dfrac{ |15 + 20 - 4| }{ \sqrt{9 + 25} }

 :  \implies \bf \: d \:  =  \sf \: \dfrac{ | \: 31 \: | }{ \sqrt{34} }

 \large \boxed{ \red{ \bf \: Hence \:  \tt \: d \:  = \dfrac{31}{ \sqrt{34} \: \: }units} }

Similar questions