Math, asked by hadifaisal298, 3 months ago

Determine the solution of the following systems of equation

8x+10y=4;11x+13y=4​

Answers

Answered by Anonymous
5

{\huge{\fcolorbox{black}{white}{\fcolorbox{black}{lightyellow}{\bf{\color{black}{Answer}}}}}}

&#10148 Given two equaton

&#10148 8x + 10y = 4 ----------(1)

&#10148 11x + 13y = 4 ----------(2)

• we can write the first eq. to common 2

&#10148 4x + 5y = 2 ------------(3)

Now multiply with 11 to 3rd equaton and 4 to 2nd equaton

&#10148 44x + 52y = 16 ————— (4)

&#10148 44x + 55y = 22 —————(5)

• Now substract 4th eq. from 5th eq.

\implies \:  \: 3y = 6 \:  \:  \\  \\ \implies \:  \: y =  \frac{\cancel6}{\cancel3} \:  \:  \:   \\  \\ \implies \:  \: y = 2 \:  \:  \:

Now putting the value of y in eq. 3rd

\implies \:  \: 4x + 5(2) = 2 \\  \\ \implies \:  \: 4x = 2 - 10 \:  \:  \:  \\  \\ \implies \:  \: x =  \frac{ - \cancel8}{\cancel4} \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \implies \:  \: x =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

• The value of x is -2 and y is 2 ..

Similar questions