Math, asked by csaptarshi9734, 9 months ago

Determine the sum of first 35 terms of an A.P., if the second term is 2 and the seventh term is 22.

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sum\:of\:35\:term=2310}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Second\:term= 2\\\\ \tt:\implies Seventh\:term=22 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Sum \: of\:first\:35\:terms= ?

• According to given question :

 \tt: \implies  a_{2} = 2 \\  \\  \tt: \implies a + d = 2  -  -  -  -  - (1) \\  \\ \tt: \implies  a_{7} = 22 \\  \\ \tt: \implies a + 6d = 22 -  -  -  -  - (2) \\  \\  \text{Subtracting \: (1) \: from \: (2)} \\  \tt:  \implies 6d - d = 22 - 2 \\  \\ \tt: \implies 5d = 20 \\  \\ \green{\tt: \implies d = 4} \\  \\  \text{Putting \: value \: of \: d \: in \: (1)} \\  \tt:  \implies a + 4 = 2 \\  \\  \green{\tt: \implies a =  - 2} \\  \\  \tt \circ \: Number \: of \: terms = 35 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  s_{n} =  \frac{n}{2} (2a +( n - 1)d) \\  \\ \tt: \implies  s_{35} =  \frac{35}{2}(2 \times  - 2 + (35 - 1) \times 4 )\\   \\ \tt: \implies  s_{35} =  \frac{35}{2}  \times ( - 4 + 136) \\  \\ \tt: \implies  s_{35} =  \frac{35}{2}  \times 132 \\  \\  \green{\tt: \implies  s_{35} = 2310}

Answered by Anonymous
6

hey

Here

2term=a+d=2 ..................eq-1

7term=a+6d=22 ............eq-2

Substituting eq1 eq1&2

we get,

a=-2

d=4

Here n=35

Sum of the 35 terms =n/2[2a+(n-1)d]=4620

Similar questions