Math, asked by kislam5665, 18 days ago

Determine the type of the conic represented by the equation
x {}^{2}  - 2xy + y {}^{2}  + 6x - 14y + 29 = 0

Answers

Answered by angadyawalkar09
9

Answer:

C

Solution

Comparing the given equation with the equation ax2+2hxy+by2+2gx+2fy+c=0, we have

a=1,b=1,h=−1,c=10,g=10 and f=0  

∴ abc+2fgh−af2−bg2−ch2=10−100=−100≠0.

and, h2−ab=(−1)2−1×1=0⇒h2=ab

Thus, we have

Δ≠0 and h2=ab

So, the given equation represents a parabola.

Step-by-step explanation:

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given conic is

\rm \: {x}^{2} - 2xy +  {y}^{2} + 6x - 14y + 29 = 0 \\

On comparing with general equation of conic

\rm \: {ax}^{2} + 2hxy +  {by}^{2} + 2gx  +  2fy + c = 0 , \: we \: get\\

a = 1 \\

h =  - 1 \\

b = 1 \\

g = 3 \\

f =  - 7 \\

c = 29 \\

Now, Consider

\rm \: \triangle  = abc + 2fgh -  {af}^{2} -  {bg}^{2} -  {ch}^{2} \\

\rm \: =  \:(1)(1)(29) + 2( - 7)(3)( - 1) - 1 {( - 7)}^{2} - 1 {(3)}^{2} - 29 {( - 1)}^{2}  \\

\rm \: =  \:29 + 42 - 49 - 9 - 29  \\

\rm \: =  \: - 16 \\

\rm\implies \:\triangle  \:  \ne \: 0 \\

Now, Consider

\rm \: ab -  {h}^{2}  \\

\rm \: =  \:1 \times 1 -  {( - 1)}^{2}  \\

\rm \: =  \:1 - 1 \\

\rm \: =  \:0 \\

\rm\implies \:ab -  {h}^{2} = 0 \\

Since,

\rm\implies \:ab -  {h}^{2} = 0  \:  \: and \:  \: \triangle  \:  \ne \: 0\\

\rm\implies \:{x}^{2} - 2xy +  {y}^{2} + 6x - 14y + 29 = 0  \: is \: parabola.\\

\rule{190pt}{2pt}

Additional Information :-

Let us consider general equation of conic

\rm \: {ax}^{2} + 2hxy +  {by}^{2} + 2gx  +  2fy + c = 0 \\

 \\ \begin{gathered}\boxed{\begin{array}{c|c} \bf Condition & \bf Nature \: of \: conic \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \triangle  \ne \: 0, \: ab -  {h}^{2} > 0  & \sf Ellipse \\ \\ \sf \triangle  \ne \: 0, \: ab -  {h}^{2}  <  0 & \sf Hyperbola \\ \\ \sf \triangle  \ne \: 0, \: ab -  {h}^{2} > 0, \: a + b = 0 & \sf Hyperbola(rectangular)\\ \\ \sf \triangle  \ne \: 0, \: h = 0, \: a = b & \sf Circle \end{array}} \\ \end{gathered} \\

Similar questions