Math, asked by roshellebiju17, 10 months ago

Determine the value of k for which the following pair of linear equations represents a pair of parallel
lines on the graph.
(2k-1)x +(k-2)y =5
(k +2)x+ y = 3

Answers

Answered by sharmavansh197900
35

Answer: -1 , 3

Step-by-step explanation:

Your answer is in image attached..

If you found this answer helpful mark as brainliest..

Hope this helps you..

Thank you!!

Attachments:
Answered by Anonymous
38

 \huge\bf\underline \green{Solution:-}

Given equations:-

  • (2k-1)x +(k-2)y - 5 = 0
  • (k +2)x+ y -3 = 0

The given Linear equations are of the form

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bigstar \bf \:  a_1x+b_1y+c_1 = 0 \:   \\  \bf \: and  \:  \: \:   \bigstar \: a_2x+b_2y+c_2 = 0

where,

  • a1 = (2k-1) , a2 = (k+2)

  • b1 = (k-2) , b2 = 1

  • c1 = -5 , c2 = -3

 \therefore \rm \frac{a_1}{a_2}  =  \frac{(2k - 1)}{(k + 2)}  \\ \\  \:  \:  \:  \:  \rm \frac{b_1}{b_2}  = \frac{k - 2}{1}  \\  \\  \:  \:  \:  \:  \:  \rm \frac{c_1}{c_2}  = \frac{ - 5}{ - 3}

The lines are parallel on the graph so the given equations have no Solution.

Then,

 \bf \: \frac{a_1}{a_2}=\frac{b_1}{b_2}\neq\frac{c_1}{c_2}\\\\

\rm\frac{2k - 1}{k + 2}=\frac{k - 2}{1}\neq\frac{5}{3}\\

 \rm  : \implies\frac{2k - 1}{k + 2}=\frac{k - 2}{1} .........(i)\\\\ \rm  : \implies \frac{k-2}{1}\neq\frac{5}{3}........(ii)\\\\ \rm\:From\:eq.\:(i)\\  \\ \rm  : \implies \: 2k - 1 =( k - 2)(k + 2) \\  \\ \rm  : \implies \: 2k - 1 =  {k}^{2}  - 4 \\  \\ \rm  : \implies \:  {k}^{2}  = 2k + 3 \\  \\ \rm  : \implies {k}^{2}  - 2k - 3 = 0

\rm  : \implies \:  {k}^{2}  - 3k + k - 3  \\  \\ \rm  : \implies \:  k(k - 3) + 1(k - 3) \\  \\ \rm  : \implies \: (k - 3)(k + 1) \\  \\ \bf  : \implies \: k = 3 \:  \: or \:  \: k =  - 1

When k = 3 or -1 then clearly  \frac{k-2}{1}\neq\frac{5}{3}

hence, the given system of equations has no Solution when k = 3 or -1

Similar questions