Determine the value of k if f(x) = 2x^4 +3x^3 +2kx^2 +3x +6 is exactly divisible by (x+1)
Answers
Answer:
Polynomial2x
4
+3x
3
+2kx
2
+3x+6
Since \: x + 1 \: divides \: the \: polynomial \: completelySincex+1dividesthepolynomialcompletely
So,So,
p(x)\:=\:x+1p(x)=x+1
p(x)\:=\:0p(x)=0
So,\:x + 1 = 0So,x+1=0
x = - 1x=−1
Putting \: the \: value \: of \: x \: :-Puttingthevalueofx:−
2 {x}^{4} + 3 {x}^{3} + 2k {x}^{2} + 3x + 62x
4
+3x
3
+2kx
2
+3x+6
2 \times { - 1}^{4} + 3 \times { - 1}^{3} + 2 \times k \times { - 1}^{2} + 3 \times - 1 + 6 = 02×−1
4
+3×−1
3
+2×k×−1
2
+3×−1+6=0
2 \times 1 + 3 \times - 1 +2k + ( - 3) + 6 = 02×1+3×−1+2k+(−3)+6=0
2 - 3+ 2k - 3 + 6 = 02−3+2k−3+6=0
- 1 + 2k - 3 + 6 = 0−1+2k−3+6=0
- 1 + 2k - 3 = 0−1+2k−3=0
- 1 + 2k = 0 + 3−1+2k=0+3
2k = 1 + 32k=1+3
k = \frac{4}{2}k=
2
4
\therefore \: k = 2∴k=2
hope it help u bro
Here, zero of x + 1:-
x + 1 = 0
=> x = - 1
∵ f(x) = 2x⁴ + 3x³ + 2kx² + 3x + 6
=> f(- 1)² = 0
[As (x - 1) completely divides f(x).]
=> 2(- 1)⁴ + 3(- 1)³ + 2k(- 1)² + 3(- 1) + 6 = 0
=> 2 - 3 + 2k - 3 + 6 = 0
=> 2k + 2 = 0
=> 2k = - 2
=> k = - 1.
Aliter:
(See attachment.)
R = (2k - 1) + 3x + 6 = 0
=> 2k + 3x + 5 = 0
=> 2k + 3x = - 5
=> 3x + 2k = - 3 - 2
=> 3x + 2k = 3(- 1) + 2(- 1).
Therefore, by comparing, k = - 1.