Math, asked by nikeshneupane84, 5 months ago

Determine the value of k so that the line
3x - Ky=8 shall make angle of 45° with the
line x-2y=3.​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Angle between the lines 3x-ky-8=0 and x-2y-3=0 is}\;\mathsf{45^{\circ}}

\textbf{To find:}

\textsf{The value of k}

\textbf{Solution:}

\mathsf{Slope\;of\;3x-ky-8=0\;is\;m_1=\dfrac{-3}{-k}=\dfrac{3}{k}}

\mathsf{Slope\;of\;x-2y-3=0=0\;is\;m_2=\dfrac{-1}{-2}=\dfrac{1}{2}}

\mathsf{Since\;the\,angle\,between\,the\,lines\,is\,45^\circ,\;we\;have}

\mathsf{tan\theta=\left|\dfrac{m_1-m_2}{1+m_1\,m_2}\right|}

\implies\mathsf{tan45^\circ=\left|\dfrac{\frac{3}{k}-\frac{1}{2}}{1+\frac{3}{k}{\times}\frac{1}{2}}\right|}

\implies\mathsf{1=\left|\dfrac{\frac{3}{k}-\frac{1}{2}}{1+\frac{3}{2k}}\right|}

\implies\mathsf{\frac{3}{k}-\frac{1}{2}=1+\frac{3}{2k}}

\implies\mathsf{\frac{6-k}{2k}=\frac{2k+3}{2k}}

\implies\mathsf{6-k=2k+3}

\implies\mathsf{6-3=2k+k}

\implies\mathsf{3k=3}

\implies\boxed{\mathsf{k=1}}

\textbf{Find more:}

Find the value of p, if the straight lines 3x + 7y - 1 = 0 and

7x - py + 3 = 0 are mutually perpendicular.​

https://brainly.in/question/15910181

Find p and q, if the following equation represents a pair of perpendicular lines

2x²+ 4xy – py² + 4x +qy+1=0​

https://brainly.in/question/14981671

If one of the line given by ax^2+2hxy+by^2=0 is perpendicular to px+ qy=0 then show that ap^2+2hpq+by^2=0

https://brainly.in/question/16569306

Answered by gavvalavasantha
0

Answer:

Therefore value of k is 1

Similar questions