Math, asked by Sunny03, 1 year ago

Determine the value of log 128 to the base √2

Answers

Answered by snehitha2
139
Let log 128 to the base √2 be x
Then,
( \sqrt{2})^{x} = 128 \\\\ (2^{\frac{1}{2}})^{x} = 128 \\\\ (2^ \frac{x}{2} ) = 2^{7} \\\\ x/2 = 7 \\\\ x = 7(2) \\\\ x = 14 \\\\ log \:128 \:\:to \:\:the \:\:base \:\: \sqrt{2} = 14
Answered by pulakmath007
14

\displaystyle \sf{  log_{ \sqrt{2} }(128)  } = 14

Given :

\displaystyle \sf{  log_{ \sqrt{2} }(128)  }

To find :

Simplify the expression

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{  log_{ \sqrt{2} }(128)  }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{  log_{ \sqrt{2} }(128)  }

\displaystyle \sf{   =  \frac{ log(128) }{ log( \sqrt{2} ) } }

\displaystyle \sf{   =  \frac{ log( {2}^{7} ) }{ log( {2}^{ \frac{1}{2} }  ) } }

\displaystyle \sf{   =  \frac{ 7log( 2) }{ \frac{1}{2}  log( {2}^{ }  ) } }

\displaystyle \sf{   =  \frac{ 7}{ \frac{1}{2}  } }

\displaystyle \sf{   =  7 \times 2 }

\displaystyle \sf{   =  14 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions