Physics, asked by hotachandrakant, 9 months ago

Determine the value of M so that A vector = 2 i cap +m j cap + k cap amd B vector = 4 i cap -2j cap -2k cap are perpendicular​

Answers

Answered by Anonymous
109

Answer

Given -

\mathrm{\vec{A} = 2\hat{\imath} + m\hat{\jmath} + \hat{k}}

\mathrm{\vec{B} = 4\hat{\imath} -2\hat{\jmath} -2 \hat{k}}

━━━━━━━━━━━━

To find -

Value of m such that two vectors are perpendicular.

━━━━━━━━━━━━

Solution -

When the vectors are perpendicular the dot product of vectors is equal to 0.

Dot product for two vectors -

\mathrm{\vec{A} • \vec{B} = (A_1 \hat{\imath} + A_2 \hat{\jmath} + A_3\hat{k} )(B_1\hat{\imath} + B_2\hat{\jmath} + B_3\hat{k})}

\boxed{\mathrm{\red{\vec{A} • \vec{B} = A_1B_1 + A_2B_2 + A_3B_3}}}

━━━━━━━━━━━━

For given two vectors -

\mathrm{\vec{A} = 2\hat{\imath} + m\hat{\jmath} +\hat{k}}

\mathrm{\vec{B} = 4\hat{\imath} -2\hat{\jmath} -2 \hat{k}}

━━━━━━━━━━━━

\mathrm\red{\vec{A} • \vec{B} = (2 \times 4) + (m \times  (- 2)) + ( -2 ) = 0 }

\mathrm {8  - 2m - 2 = 0 }

\mathrm {6 - 2m = 0}

\mathrm {2m = 6}

\mathrm\pink{m = 3}

━━━━━━━━━━━━

\underline{\mathrm\red{Value\: of\: m\: for\: which </p><p>\:2 \:vectors \:are \:perpendicular\: is\: 3}}

Similar questions