Math, asked by SHREYAS7404, 1 year ago

Determine the value of'm' so that the equation has real and equal roots. x^2-4x+(m-4)=0​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{Roots\;of\;x^2-4x+(m-4)=0\;are\;real\;and\;equal}

\underline{\textbf{To find:}}

\textsf{The value of 'm'}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{x^2-4x+(m-4)=0}

\mathsf{Comparing\;with\;ax^2+bx+c=0\;we\;get}

\mathsf{a=1,\;b=-4,\;c=m-4}

\textsf{Since the roots are equal, we have}

\;\;\;\;\;\;\;\;\;\;\;\bf\;b^2-4ac=0

\implies\mathsf{(-4)^2-4(1)(m-4)=0}

\implies\mathsf{16-4(m-4)=0}

\implies\mathsf{-4(m-4)=-16}

\implies\mathsf{m-4=\dfrac{-16}{-4}}

\implies\mathsf{m-4=4}

\implies\mathsf{m=4+4}

\implies\boxed{\bf\,m=8}

\underline{\textbf{Answer:}}

\textbf{The value of m is 8}

#SPJ3

Answered by Harsh1052007
0

Answer:

Ans => m = 8

Step-by-step explanation:

Hope u Understood

Attachments:
Similar questions