Math, asked by rehanmomin0109, 5 months ago

Determine the value of 'p' for which the equation
2x square + 4 root3x + p = 0 has equal roots.​

Answers

Answered by aryan073
6

Given :

•The Quadratic equation =\bf{2x^{2}+4\sqrt{3}x+p=0 }

To find :

•The value of 'p'=?

Solution :

⇒Given Quadratic equation \bf{2x^{2}+4\sqrt{3}x+p=0}

⇒The nature of the equation are equal .

Hence, the determinant \red{\bf{D=0}}

\\ \\ \implies\green{\bf{D=b^{2}-4ac}}

\\ \\ \implies\sf{D=(4\sqrt{3})^{2}-4(2)(p) =0}

\\ \\ \implies\sf{D=48-8p=0}

\\ \\ \implies\sf{8p=48}

\\ \\ \implies\boxed{\sf{p=6}}

Nature of the Roots:

\\ \\ \bf{\blue{(1) b^{2}-4ac=0  }\quad ......The \: roots \: real \: and \: equal }

\\ \\ \bf{\blue{(2) b^{2}-4ac>0 } \quad ......The \: roots \: real \: and \: distinct }

\\ \\ \bf{\blue{(2) b^{2}-4ac<0} \: \quad ......The \: roots \: are \: imaginary }

Similar questions