Math, asked by poojasuman71, 5 months ago

Determine the value of the root of the following quadratic equation from their discriminant x² -2x+ 9/4 = 0​

Answers

Answered by ItzMysticalBoy
105

GIVEN :

  • \sf{x^2 -2x+\dfrac{9}{4} = 0} .

TO FIND :

  • The value of the root.

SOLUTION:-

⦿ We have,

  • a = 1
  • b = -2
  • c = 9/4

FORMULA USED :

  • \underline {\huge {\red{\bf{D=  b^2 - 4ac}}}}

Putting the values in the formula:

: \implies  \sf{D=  b^2 - 4ac} \\  \\

 : \implies  \sf{D=  ( - 2)^2 -  \cancel{4}\times 1\times \dfrac{9}{\cancel{4}} }  \\  \\

 : \implies  \sf{D=  4  - 9} \\   \\

 : \implies    \underline{\underline{\huge{\boxed{\pink{\bf{D= -5}}}}}}

•°• Here, we found that Discriminant < 0 so the roots are unreal and imaginary.

Answered by anshu24497
1

\large\bf{\color{navy}{Correct~Question}}

Determine the value of the root of the following quadratic equation from their discriminant \sf{x^2 -2x+\dfrac{9}{4}= 0}

\large\bf{\color{orange}{Given}}

\sf{x^2 -2x+\dfrac{9}{4} = 0}

\large\bf{\purple{To~Find}}

The value of the root.

\large\bf{\color{deepskyblue}{Solution}}

 We have,

a = 1

b = -2

c = 9/4

\large\bf{\color{green}{Formula~Required}}

\underline {\large{\boxed {\red{\sf{D= b^2 - 4ac}}}}}

Substituting the values in first formula :

\begin{gathered} \implies \sf{D= b^2 - 4ac} \\ \\\end{gathered}

\begin{gathered} \implies \sf{D= ( - 2)^2 - \cancel{4}\times 1\times \dfrac{9}{\cancel{4}} } \\ \\\end{gathered}

\begin{gathered} \implies \sf{D= 4 - 9} \\ \\\end{gathered}

\implies\underline{\underline{\large{\boxed{\pink{\bf{D= -5}}}}}}

∴ Here , D < 0 so roots are not real and unequal.

Similar questions