Math, asked by rayallasrikanth, 20 days ago

Determine the value of "x" from the following expression : 2^x*8^1/5=2^1/5

Answers

Answered by hanshal201500241
2

Step-by-step explanation:

2^x × 8^1/5 = 2^1/5

2^x x 2^3/5 = 2^1/5

x + 3/5 = 2/5

x = -1/5

Answered by vinod04jangid
2

Answer:

x = -2/5

Step-by-step explanation:

Given :- The given expression is 2^{x} * 8^{\frac{1}{5} }  = 2^{\frac{1}{5} }

To Find :- The value of x in the above expression.

Solution :-

The given expression is 2^{x} * 8^{\frac{1}{5} }  = 2^{\frac{1}{5} }

Let's multiply 5 in the power on both sides,

2^{5x} × (8^{5} )^{\frac{1}{5} } = (2^{5} )^{\frac{1}{5} }

Now, the equation becomes

2^{5x} × 8 = 2

32^{x} × 8 = 2            [ ∵ a^{bx} = (a^{b^{x} }) ]

⇒  32^{x} = 2 ÷ 8

⇒  32^{x} = 1/4

2^{5x} = 1/2^{2}

2^{5x} = 2^{-2}

⇒ 5x = - 2       [∵ We know that we can equate the powers equal if the                    

                                                                                        base is same ]

x =  ( - 2/5 )

Therefore, x = -2/5 in the expression 2^{x} * 8^{\frac{1}{5} }  = 2^{\frac{1}{5} }.

#SPJ2

https://brainly.in/question/29602452

https://brainly.in/question/16551075

Similar questions