Math, asked by rinki95, 11 months ago

determine the value of x2+y2 when x3-y3=54,x-y=18,xy=2​

Answers

Answered by shadowsabers03
13

Question:

Determine the value of  x² + y²  when x³ - y³ = 54,  x - y = 18,  xy = 2​.

Solution:

We may recall the identity given below.

\Large\text{$x^3-y^3=(x-y)(x^2+xy+y^2)$}

So,

    x³ - y³ = 54

⇒  (x - y)(x² + xy + y²) = 54

⇒  18 (x² + xy + y²) = 54

⇒  x² + xy + y² = 54 / 18

⇒  x² + xy + y² = 3

⇒  x² + y² + 2 = 3

⇒  x² + y² = 3 - 2

⇒  x² + y² = 1

Hence, 1 is the answer.

Answered by Anonymous
6

Answer:

\boxed{\textbf{\large{x square + y square = 1}}}

Given:

 {x}^{3}  -  {y}^{3}  = 54

x - y = 18

xy = 2

To find :

 {x}^{2}  +  {y}^{2}

Explanation:

we know the identity

 {a}^{3}  -  {b}^{3}  = (a - b) \\ ( {a}^{2} + ab +  {b}^{2}  )

here, for x and y

 {x}^{3}  -  {y}^{3}  = (x - y) \\ ( {x}^{2} + xy +  {y}^{2}  )

put the given values,

 =  &gt; 54 = (18)( {x}^{2}  + (2) +  </p><p>{y}^{2} )

 =  &gt;  \frac{54}{18}  =  {x}^{2}  +  {y}^{2} + (2)

 =  &gt; 3 - 2 =  {x}^{2}  +  {y}^{2}

1 = x^2 + y^2

\boxed{\textbf{\large{x square + y square = 1}}}

Similar questions