Determine the vector product of v⃗ 1=2i∧+3j∧−k∧v→1=2i∧+3j∧−k∧ and v⃗ 2=i∧+2j∧−3k∧,
Answers
Determine the vector product of v⃗ 1=2i∧+3j∧−k∧v→1=2i∧+3j∧−k∧ and v⃗ 2=i∧+2j∧−3k∧,
given,
concept : if two vectors A = and B =
then, cross product of A and B = A × B =
so, cross product of and =
=
=
Determine the vector product of
\large{\bold{ \vec{V_1} = 2 \hat{i} + 3 \hat{j} - \hat{k}}}
\large{\bold{ \vec{V_2} = \hat{i} + 2 \hat{j} - 3\hat{k}}}
\huge{\bold{\underline{Given:-}}}
\large{\bold{ \vec{V_1} = 2 \hat{i} + 3 \hat{j} - \hat{k}}}
\large{\bold{ \vec{V_2} = \hat{i} + 2 \hat{j} - 3\hat{k}}}
\huge{\bold{\underline{Explanation:-}}}
Here,
V_1 \times V_2 = \left[ \begin{array}{ccc} \hat{i} &\hat{j} & \hat{k} \\ 3 & 3 & -1 \\ 1 & 2 & -3 \end{array} \right]
Now,
{ \implies V_1 \times V_2 = \hat{i}( - 9 - (-2)) + \hat{j}(-1 - ( -9)) + \hat{k}(6 - 3)}
Simplifying
{ \implies V_1 \times V_2 = \hat{i}( - 7) + \hat{j}(8) + \hat{k}(3)}
\large{\boxed{\boxed{ V_1 \times V_2 = -7 \hat{i} + 8 \hat{j} + 3\hat{k}}}}