Determine the volume of a conical tin having radius of the base as 30 cm and its slant height as 50 cm. Find its Total surface area also.
Answers
Answer:
Volume of the conical tin is 6280 cubic cm.
Step-by-step explanation:
Formula used:
1.Volume of cone=\frac{1}{3}\:\pi\:r^2h=
3
1
πr
2
h cubic units
2.l^2=h^2+r^22.l
2
=h
2
+r
2
Let r, h and l be radius, height and slant height of the conical tin respectively.
Given:
Radius of the conical tin, r = 30 cm
Slant height of the conical tin, l=50 cm
\begin{gathered}l^2=h^2+r^2\\\\(50)^2=h^2+(30)^2\\\\2500=h^2+900\\\\h^2=2500-900\\\\h^2=1600\\\\h=\sqrt{1600}\\\\h=40\:cm\end{gathered}
l
2
=h
2
+r
2
(50)
2
=h
2
+(30)
2
2500=h
2
+900
h
2
=2500−900
h
2
=1600
h=
1600
h=40cm
Now,
Volume of the conical tin
\begin{gathered}=\frac{1}{3}\:\pi\:r^2h\\\\=\frac{1}{3}\:(3.14)\:(30)^2(40)\\\\=\frac{1}{3}\:(3.14)\:(30)^2(40)\\\\=\frac{1}{3}\:(3.14)\:(900)(40)\\\\=3.14*300*40\\\\=314*3*40\\\\=314*120\\\\=6280 \;cubic \:cm.\end{gathered}
=
3
1
πr
2
h
=
3
1
(3.14)(30)
2
(40)
=
3
1
(3.14)(30)
2
(40)
=
3
1
(3.14)(900)(40)
=3.14∗300∗40
=314∗3∗40
=314∗120
=6280cubiccm.
Required Answer:
- Radius of the base (r) = 30cm
- Slanted height (l) = 50cm
We can Find its perpendicular height by using Pythagoras theorem;
(H)² = (B)² + (P)²
Where as:
- H = Hypotenuse (Slanted height)
- B = Base
- P = Perpendicular height
After substituting the values;
➦ (50)² = (30)² + (p)²
➦ 2500 = 900 + p²
➦ 2500 - 900 = p²
➦ 1600 = p²
➦ P = 40 cm (Perpendicular height)
___________________________
Where as;
- r = Radius of base
- h = perpendicular height
After putting values;
➦ ⅓ × 22/7 × 30 × 30 × 40
➦ 37680 cm³
___________________________
Where as;
- l = slanted height
- r = Radius of base
After putting values;
➦ 22/7 × 30 × 50 + 22/7 × 30 × 30
➦ 4710 + 2826
➦ 7536 cm²