Math, asked by shrikrushandhakare, 20 days ago

determine the whether of points are collinear (3) R(0,3) , D(2,1) , S(3,-1)​

Answers

Answered by saichavan
12

Answer:

 R (0,3) = (x_{1} , y_{1} )

 D (2,1) = ( x_{2} , y_{2}

 S ( 3 , -1) = ( x_{3} , y_{3} )

 \displaystyle \: Slope \: of \:  line \: RD = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}

 \displaystyle \: = \frac{1-3}{2-0}

  \displaystyle = \frac{-2}{2}

 \displaystyle \therefore \: Slope \: of \: line \: RD = -1

 \displaystyle \: Slope \: of \: line \: DS = \frac{-1-1}{3-2}

 \displaystyle \: = \frac{-2}{1}

 \therefore \: Slope \: of \: line \: DS = -2

 Slope \: of \: line \: RD \neq \: Slope \: line \: DS

 \therefore \: Points \: R, \: D \: and \:  S \: are \: not \: collinear

Similar questions