Math, asked by srknthkorra, 5 months ago

Determine two consecutive even positive integers,the sum of whose squares is100​

Answers

Answered by Anonymous
0

ANSWER:--

What are the two consecutive even numbers the sum of whose squares is 100?

There are two possible sets of consecutive numbers that satisfy this question. While 6 and 8 will work, so will -8 and -6.

There are two possible sets of consecutive numbers that satisfy this question. While 6 and 8 will work, so will -8 and -6.Allow the two numbers to be x, and x+2. So:----

Allow the two numbers to be x, and x+2. So:

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–4

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2x²+2x-48=48–48

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2x²+2x-48=48–48x²+2x-48=0

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2x²+2x-48=48–48x²+2x-48=0(x-6)(x+8)=0

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2x²+2x-48=48–48x²+2x-48=0(x-6)(x+8)=0(6–6)(6+8)=0*8=0

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2x²+2x-48=48–48x²+2x-48=0(x-6)(x+8)=0(6–6)(6+8)=0*8=0(-8–6)(-8+8)=-48*0=0

Allow the two numbers to be x, and x+2. So:x²+(x+2)²=100x²+x²+4x+4–4=100–42x²/2+4x/2=96/2x²+2x-48=48–48x²+2x-48=0(x-6)(x+8)=0(6–6)(6+8)=0*8=0(-8–6)(-8+8)=-48*0=0So this means that the value of x can be 6, or -8 and get valid results for either.

Similar questions