Math, asked by alenaabraham, 3 months ago

determine weather the following are colinear A(2,-5) ,B(2,-5) C(-4,7)​

Answers

Answered by Flaunt
116

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

A(2,-5),B(2,-5) ,C(-4,7)

\sf x_{1}=2,x_{2}=2 \&\: x_{3}=-4

\sf y_{1}=-5,y_{2}=-5\&\: y_{3}=7

\sf AB=  \sqrt{ {(x_{2} - x_{1})}^{2}  +  {(y_{2 }- y_{1})}^{2}  }

 \sf =  > AB =  \sqrt{ {(2 - 2)}^{2}  +  {( - 5 + 5)}^{2} }  = 0

\sf BC=  \sqrt{ {(x_{3} - x_{2})}^{2}  +  {(y_{3 }- y_{2})}^{2}  }

\sf=> BC =  \sqrt{ {( - 4 - 2)}^{2}  +  {(7 + 5)}^{2} }

 =  \sqrt{ {( - 6)}^{2} +  {(12)}^{2}  }  =  \sqrt{36 + 144}  =  \sqrt{180}  = 6 \sqrt{5}

\sf CA=  \sqrt{ {(x_{3} - x_{1})}^{2}  +  {(y_{3 }- y_{1})}^{2}  }

\sf =>CA =  \sqrt{ {( - 4 - 2)}^{2} +  {(7 + 5)}^{2}  }  =  \sqrt{180}  = 6 \sqrt{5}

Since ,AB+BC=CA

\sf\bold{0+6 \sqrt{5}=6\sqrt{5}}

Here ,we see that sum of AB and BC is equal to the CA.

Hence, we can say that above points are collinear.


MrSanju0123: Great :)
Flaunt: :)
sreekarreddy91: Superb
Similar questions