Math, asked by MrGenius47, 4 months ago

Determine whether the function f(x) = 2x+1/x-2 has inverse, if it exists find it.

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:Let \: f(x) \:  = \dfrac{2x + 1}{x - 2}  \: and \: x \ne \: 2

To Check One - One

 \rm \: Let \:  us  \: consider \:  two \:  numbers \:  x \:  and \:  y \:  \ne \: 2 \: such \: that

 \rm :\longmapsto\:\rm \: f(x) = f(y)

\rm :\longmapsto\:\dfrac{2x + 1}{x - 2}  = \dfrac{2y + 1}{y - 2}

\rm :\longmapsto\: \cancel{2xy} + y - 4x - \cancel2 = \cancel{2xy} + x - 4y - \cancel2

\rm :\longmapsto\:5x = 5y

\rm :\longmapsto\:x = y

\bf\implies \:f(x) \: is \: one - one.

To Check Onto :-

 \rm \: Let \: if \: possible \: there \: exist \: an \: element \: y \:  \ne \: 2 \: such \: that

\rm :\longmapsto\:f(x) = y

\rm :\longmapsto\:\dfrac{2x + 1}{x - 2}  = y

\rm :\longmapsto\:2x + 1 = xy - 2y

\rm :\longmapsto\:xy - 2x = 1 + 2y

\rm :\longmapsto\:x(y - 2) = 2y + 1

\rm :\longmapsto\:x = \dfrac{2y + 1}{y - 2}  \in \: R -  \{2 \}

\bf\implies \:f(x) \: is \: onto.

\rm :\longmapsto\:Since \: f(x) \: is \: one - one \: and \: onto

\rm :\implies\:f(x) \: is \: bijective

\rm :\implies\:f(x) \: is \: invertible

\rm :\implies\: {f}^{ - 1} (x) = \dfrac{2x + 1}{x - 2}  \: for \: x \ne \: 2

Similar questions