Math, asked by Mahankalikeerthana26, 7 months ago

determine whether the function f(x)= x e^x-1/ e^x+1 is even or odd​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{f(x)=x\left(\dfrac{e^x-1}{e^x+1}\right)}

\underline{\textbf{To determine:}}

\textsf{Whether f(x) is even function or odd function}

\underline{\textbf{Solution:}}

\underline{\textbf{Concept used:}}

\textbf{A function f(x) is said to be odd if f(-x)=-f(x)}

\textbf{A function f(x) is said to be even if f(-x)=f(x)}

\mathsf{Consider,}

\mathsf{f(x)=x\left(\dfrac{e^x-1}{e^x+1}\right)}

\mathsf{f(-x)=-x\left(\dfrac{e^{-x}-1}{e^{-x}+1}\right)}

\mathsf{f(-x)=-x\left(\dfrac{\dfrac{1}{e^x}-1}{\dfrac{1}{e^x}+1}\right)}

\mathsf{f(-x)=-x\left(\dfrac{\dfrac{1-e^x}{e^x}}{\dfrac{1+e^x}{e^x}}\right)}

\mathsf{f(-x)=-x\left(\dfrac{1-e^x}{e^x}{\times}\dfrac{e^x}{1+e^x}}\right)}

\mathsf{f(-x)=-x\left(\dfrac{1-e^x}{1+e^x}}\right)}

\mathsf{f(-x)=x\left(\dfrac{e^x-1}{e^x+1}}\right)}

\implies\mathsf{f(-x)=f(x)}

\therefore\mathsf{f(x)\;is\;even\;function}

Similar questions