Determine whether the function
fz- log2^x^2
is even as odd function
Answers
Answered by
1
Answer:
f(x)=log(2−x2+x)f(x)=log(2−x2+x)
Check f(−x)f(−x) to identify whether f(x)f(x) is even or odd function
f(−x)=log(2+x2−x)f(−x)=log(2+x2−x)
⟹f(−x)=log(2−x2+x)−1⟹f(−x)=log(2−x2+x)−1
We know that logmn=nlogmlogmn=nlogm
⟹f(−x)=−log(2−x2+x)⟹f(−x)=−log(2−x2+x)
⟹f(−x)=−f(x)⟹f(−x)=−f(x)
Hence ff is an odd function.
603 viewsView 4 Upvoters
Related Questions (More Answers Below)
Similar questions