Math, asked by kanpurpathak, 6 months ago

Determine whether the function
fz- log2^x^2
is even as odd function​

Answers

Answered by premjipremji743
1

Answer:

f(x)=log(2−x2+x)f(x)=log⁡(2−x2+x)

Check f(−x)f(−x) to identify whether f(x)f(x) is even or odd function

f(−x)=log(2+x2−x)f(−x)=log⁡(2+x2−x)

⟹f(−x)=log(2−x2+x)−1⟹f(−x)=log⁡(2−x2+x)−1

We know that logmn=nlogmlog⁡mn=nlog⁡m

⟹f(−x)=−log(2−x2+x)⟹f(−x)=−log⁡(2−x2+x)

⟹f(−x)=−f(x)⟹f(−x)=−f(x)

Hence ff is an odd function.

603 viewsView 4 Upvoters

Related Questions (More Answers Below)

Similar questions