Math, asked by krithikthegreat4180, 10 months ago

Determine whether the given quadratic equation has real roots and if so, find the roots. =6x2 + x-2=0

Answers

Answered by amansharma264
15

Answer:

answer \\ x =  \frac{1}{2}  \\  \\ x =  \frac{ - 2}{3}

Step-by-step explanation:

 \large \bold \red{ \underline{ \underline{to \:  \: find}}} \\ quadratic \:  \: equation \:  \: has \:  \: real \:  \: roots \:  \: and \:  \: if \:  \: so \\ find \:  \: the \:  \: roots \:  \: of \:  \: equations \:  \: 6 {x}^{2} + x - 2 = 0 \\  \large \bold \orange{ \underline{ \underline{explanation}}}  \\  \large \bold \green{notes} \\ 1) =  \: if \:  \: d > 0 \:  \: roots \:  \: are \:  \: real \:  \: and \:  \: unequal \\ 2) = if \:  \: d = 0 \:  \: roots \:  \: are \:  \: real \:  \: and \:  \: equal \\ 3) =if \:  \: d < 0 \:  \: roots \:  \: are \:  \: imaginary \\  \\  \large \bold \pink{check \:  \: the \:  \: nature \:  \: of \:  \: roots} \\ 6 {x}^{2} + x - 2 = 0 \\ d =  {b}^{2} - 4ac \\ d =  {1}^{2} - 4(6)( - 2) \\ d = 1 + 48 \\ d = 49 \\ it \:  \: means \:  \: roots \:  \: are \:  \: real \:  \: and \:  \: equal \\ x =  \frac{ - b  +  \sqrt{d} }{2a}  \\ x =   \frac{ - 1 +  \sqrt{49} }{12} \\  \\ x =  \frac{ - 1 + 7}{12} \\ \\  x =  \frac{6}{12} \\ \\  x =  \frac{1}{2}   \\  \\ x =  \frac{ - b -  \sqrt{d} }{2a} \\  \\ x =   \frac{ - 1 -  \sqrt{49} }{12} \\  \\ x =   \frac{ - 1 - 7}{12} \\  \\ x =   \frac{ - 8}{12} \\  \\ x =  \frac{ - 2}{3}

Answered by Anonymous
2

QUESTION:

Determine whether the given quadratic equation has real roots and if so, find the roots. =6x2 + x-2=0

TO FIND :

the given quadratic equation has real roots and if so, find the roots. =6x2 + x-2=0

ANSWER:

We know that quadratic equation is in the form of

\huge\red {a {x}^{2}  + bx + c = 0}

\purple {(we \: check \: discriminant \: ( {b}^{2} - 4ac)  \: to \: find \: which \: types \: of \: roots \: there \: is..)}

\green{If}

1.

\red {d greater than 0 \\ (real \: and \: unequal \: roots)}

2.

\blue {d = 0 \\ (real \: and \: equal \: roots)}

3.

\orange {d less than 0 \\ (imaginary \: roots)}

Now come to main question ;

6 {x}^{2}  + x - 2 = 0

here;

a = 6

b =1

c = -2.

so, using the formula;

d =  {b}^{2}  - 4ac \\ d =  {1}^{2}  - 4 \times 6 \times ( - 2) \\ d = 1  + 48 \\ d = 49

hence, discriminant is 49 that is greater than 1 so,

\organe{(it \: has \: real \: and \: unequal \: roots)}

Now to find the roots we use quadratic formula;

x =  \frac{ - 1 \binom{ + }{ - } \sqrt{ {1}^{2}  - 4 \times 6 \times ( - 2)}  }{2 \times 6}

x =  \frac{ - 1 \binom{ + }{ - } \sqrt{49}  }{12}  \\ x =  \frac{ - 1 \binom{ + }{ - } 7}{12}

Taking (-) first;

x =  \frac{ - 1 - 7}{12}  \\ x =  \frac{ - 8}{12}  \\ x =  \frac{ - 2}{</u><u>3</u><u>}

Taking (+);

x =  \frac{ - 1 +7 }{12}  \\ x =   \frac{ - 6}{12}  \\ x =  \frac{ - 1}{2}

Hence roots are;

 \frac{ - 2}{3}  \: and \:  \frac{ - 1}{2}

Similar questions