Math, asked by karanmadhwani611, 6 months ago

determine whether the given quadratic equation has real roots if so find the roots 2 x square minus 2 root 2 X + 1 equal to zero​

Answers

Answered by viperisbackagain
0

\huge\mathbb\red{ANSWER}

if roots are real then D = 0

as \: we \: know \:  \\  \\  \huge \color{brown}{d=  {b}^{2}  - 4ac} \\

so

 {b}^{2}  - 4ac \:  = 0

where a = 2 b = -22 c =

1

then

(  { - 2 \sqrt{2}) }^{2}  - 4(2)(1) = 0 \\  \\ 8 -8 = 0   \\  \\ 0 = 0 \\  \\ hence \: proved \:

Now we have to find root

2x² - 22x + 1

by using quadratic formula

 \huge \color{indigo}{x =  \frac{ - b  ± \sqrt{ {b}^{2} - 4ac }  }{2a} }

by putting value

x =   \frac{  - (- 2\sqrt{2}) ± \sqrt{ { (- 2 \sqrt{2}) }^{2} } - 4(2)(1)  }{2(2)}  \\  \\ x =  \frac{2 \sqrt{2 } ±  \sqrt{8 - 8}   }{4}  \\  \\ x =  \frac{2 \sqrt{2} ± \sqrt{0}  }{4}  \\  \\ x =  \frac{ 2\sqrt{2} }{4}  \\  \\ x =  \frac{ \sqrt{2} }{2}  \\  \\

hope it helps you

be brainly

Similar questions