Math, asked by rajeswari65, 1 year ago

Determine whether the given quadratic equations have real roots ,if so find the roots 6x^2+x-2= 0​

Answers

Answered by Anonymous
6

Answer:

Hello Dear User__________

Here is Your Answer...!!

____________________

Step by step solution:

Given \ p(x)=6x^{2}+x-2\\\\we \ have \ to \ check \ whether \ p(x) \ have \ real \ roots \ or \ not.\\\\For \ real \ roots =b^{2}-4ac\geq0\\\\putting \ value \ here\\\\b^{2}-4ac\geq0\\\\ 1^{2}-(4 \times6 \times-2)=1+24=25\\\\ b^{2}-4ac\geq0 \ so \ p(x) \ has \ real \ roots\\\\p(x)=6x^{2}+x-2\\\\p(x)=6x^{2}+4x-3x-2\\\\p(x)=2x(3x+2)-(3x+2)\\\\p(x)=(3x+2)(2x-1)\\\\\alpha =3x+2=0 \ or \ \beta =2x-1\\\\x=\frac{-2}{3} \ or \ x=\frac{1}{2}

Hope it is clear to you.


Anonymous: mark it brainliest dear
Similar questions