Math, asked by rajavenkat889, 9 months ago

Determine whether the quadratic equation x2+5x+5=0 have real roots and if so, find
the roots.

Answers

Answered by suhas122006
11

Step-by-step explanation:

x²-5x+5 = 0

a=1 b=-5 c=5

D = b²-4ac

= 25-4(1)(5)

=25-20

= 5

The roots are real..

Let the roots be a and b..

then,

a = -b+√D / 2a

= -5 + √5 / 2

b = -b-√D / 2a

= -5-√5 / 2

Pls mark as brainliest..

Answered by hipsterizedoll410
12

Answer: Roots are real and its roots are -5+√5/2 and -5-√5/2.

Given:

\sf x^2+5x+5=0

To find:

\sf Roots\:of\:the\:quadratic\:equation\:if\:the\:root\:are\:real.

Formula used:

\boxed{\sf Discriminant(D):b^2-4ac}

\sf where, a=Coefficient\:of\:x^2

         \sf b=Coefficient\:of\:x

         \sf c=Value\:of\:constant.

\sf If,

\sf b^2-4ac>0\:(Two\:real\:roots\:exist)

\sf b^2-4ac=0\:(Two\:identical\:roots\:exist)

\sf b^2-4ac<0\:(Two\:imaginary\:roots\:exist)

\boxed{\sf Quadratic\:formula:\dfrac{-b\pm\sqrt{b^2-4ac} }{2a}}

Explanation:

\sf According\:to\:the\:question,

\sf a=1,b=5\:and\:c=5

\sf\therefore D=5^2-4\times1\times5

      \sf =25-20

      \sf =5\:(Two\:real\:roots\:exist)

\sf Now, substituting\:the\:values\:in\:quadratic\:formula,we\:get:

\Rightarrow\sf \dfrac{-5\pm\sqrt{5} }{2\times1}

\boxed{\sf \therefore the\:roots\:are: \sf \dfrac{-5+\sqrt{5} }{2}\:and\:\dfrac{-5-\sqrt{5} }{2}}

Hence, the roots of x²+5x+5=0 is real and its roots are -5+√5/2 and -5-√5/2 respectively.

Similar questions