Math, asked by jram62800, 2 days ago

determine whether x-4 is a factor of x³- 4x²-4x+16 by using factor theorem​

Answers

Answered by chandrashekarhdchand
0

1987

Step-by-step explanation:

7791(8999)

56326=90123

1987

Answered by Yoursenorita
2

 \\  \\  \\  \\ to \:  \: check \:  \: whether \:  \: (x - 4) \:  \:  is \\  a \:  \: factor \:  \: of \:  \: ( {x}^{3}  - 4 {x}^{2}  - 4x + 16) \\  \\  \\ we \:  \: need \:  \: to \:  \: divide \:  \: it \\  \\  \\  on \: \:  dividing \:  \: we \:  \: get \:  \: the \:  \: quotient \\  \:  \: as \:  \: ( {x}^{2}  - 4) \:  \:  \\  \\  \\ \: and \:  \\  \\  \\ the  \: \: remainder \:  \: \\  we \:  \:g et \:  \:  \\ it \:  \: as \:  \: zero(0). \\  \\  \\ since \:  \: we \:  \: get \:  \: the \:  \:  \\  \\ remainder \:  \: as \:  \: zero \:  \ \\ or \:  \:  \\  \\ since \:  \: we \:  \: see \:  \: that \:  \: th e\:  \:  \\ number \:  \: is \:  \: perfectly \:  \: divisible \:  \\  by \:  \: the \:  \: divident \:  \: \\  we \:  \: understand \:  \: that  \\  \\  \\ \:  \: yes \:  \: the \: \:  number \:  \: (x - 4) \:  \: is \:  \\  \\ perfectly\:  \: divisible \:  \: by \: ( {x}^{3}  - 4 {x}^{2}  - 4x + 16)  \\  \ \\  \\  \\ \  \\ see  \: \: the \: \:  attachment \:  \: solution \:  \\  \\ is \: attached \\  \\  \\

Attachments:
Similar questions