Math, asked by nanijaanu008, 18 days ago

Determine which digits do the letters represent.
ABCD + EFGB = EFCBH​

Answers

Answered by tajinderkaur78
4

Answer:

Hey mate here is your answer

Step-by-step explanation:

1234 + 5672 = 56328

But correct calculation will be 6906

Please mark me as Brainliest

Answered by ravilaccs
0

Answer:

The digits of the given letters are given below

9 & 5 & 6 & 7 & 1 \\ & 1 & 0 & 8 & 5 \\\\1 & 0 & 6 & 5 & 2 & \\

Step-by-step explanation:

  • Since the addition of two digits will give a maximum of 18 , or a maximum of 19 if there is a carryover (or renaming) of 1 , this means that the maximum carryover is $1 .$
  • So $E=1 .$
  • In the thousands column, $A+E=10+F$ or $A+E+1=10+F$, and since E$=1$, then$F=A-9$ \ or\ $A-8$.
  • Now A \leq 9$, so $F=0$ or 1 . But $E=1$ already, so $F=0$.
  • In the hundreds column, if B+F=10+C$, then $B=10+C$ is not possible. If $B+F+1=10+C$, then $B=9+C$ means $B=9$ and $C=0$, but $F=0$ already.
  • This means that there is no carryover from $B+F$ or B+F+1$.
  • But$B+F \neq C$ as $F=0$ and $B \neq C$, so $B+F+1=C$, i.e. there is carryover from the tens column. Since $F=0$, then
  • \mathbf{B}+\mathbf{1}=\mathbf{C}$. $-$ - (1)
  • This also means that in the thousands column, A+E=10$, i.e. $\mathbf{A}=\mathbf{9}$ since$E$ $=1$.
  • suppose there Is no carryover in the ones column, i.e. $D+b=H$.
  • Then $\mathrm{C}+\mathrm{G}=10+\mathrm{B}$ because there is carryover from the tens column.
  • From (1), $C=B+1$, so $B+1+G=10+B$, i.e. $G=9$. But $A=9$ already.
  • So there is a carryover in the ones column, i.e. $D+B=10+H_{.}---(2)$
  • Then $C+G+1=10+B$, i.e.$B+1+G+1=10+B$, which gives $\mathbf{G}=\mathbf{8}$.
  • From (2), \mathrm{D}+\mathrm{B}=10+\mathrm{H}$.
  • Since D, B \leq 7$ (as $G=8$ and $A=9$ already) and $D \neq B$, the maximum value of $D+B$ is $7+6=13$, i.e. $H \leq 3$.
  • If $B=7$, from (1), $C=8$, but $G=8$ already.
  • If $B=6$, then $D=7$. But from $(1), C=7$ also, a contradiction. So \mathrm{H} \neq 3$.
  • But $\mathrm{H} \geq 2$ (as $F=0$ and $E=1$ already), so $\mathbf{H}=\mathbf{2}$. Then $D+B=7+5$ or 5+$ $7 .$
  • If $B=7$, from $(1), C=8$, but $G=8$ already.
  • So$\mathbf{D}=\mathbf{7}$and $\mathbf{B}=\mathbf{5}$. From (1), \mathbf{C}=\mathbf{6}$.
  • Thus $E=1, F=0, A=9, G=8, H=2, D=7, B=5, C=6$ :
  • 9 & 5 & 6 & 7 & 1 \\$+$ & 1 & 0 & 8 & 5 \\\\1 & 0 & 6 & 5 & 2 & \\
Similar questions