determine which of the following polynomial has (x+1) a factor.(1)x4+3x3+3x2+x+1.(2)x3-x2-(2+root2)x+root2
Answers
Answer:
x³ - x² - (2 + √2)x + √2
Step-by-step explanation:
Given the factor is x + 1
so consider
=> x + 1 = 0
=> x = -1.
Now, consider the first polynomial
x⁴ + 3x³ + 3x² + x + 1
substitute x value in this polynomial
=> (-1)⁴ + 3(-1)³ + 3(-1)² + (-1) + 1
=> 1 - 3 + 3 - 1 + 1
=> 1 ≠ 0
X is not a factor of this polynomial.
Lets consider the second polynomial.
x³ - x² - (2 + √2)x + √2
substitute x value in this polynomial also
=> (-1)³ - (-1)² - (2 + √2)(-1) + √2
=> -1 -1 + 2 - √2 + √2
=> 0
so, (x + 1) is a factor of the second polynomial x³ - x² - (2 + √2)x + √2
The zero of x + 1 is -1.
(1) Let p (x) = x4 + 3x3 + 3x2 + x + 1 .
∴ p (-1)= (-1)4 + 3 (-1)3 + 3 (-1)2 + (- 1) + 1
= 1 – 3 + 3 – 1 + 1 = 1
⇒ p (-1) ≠ 0
So, (x + 1) is not a factor of x4 + 3x3 + 3x2 + x+ 1.
(2) Let p (x) = x3 – x2 – (2 + √2) x + √2
∴ p (- 1) =(- 1)3- (-1)2 – (2 + √2)(-1) + √2
= -1 – 1 + 2 + √2 + √2
= 2√2
⇒ p (-1) ≠ 0
So, (x + 1) is not a factor of x3 – x2 – (2 + √2) x + √2.