Math, asked by tirusalt, 5 months ago

determine which one has x + 1 as factor
[tex]x^{4} + x^{3} +x^{2} +x+ 1


tirusalt: ffff

Answers

Answered by sakshichourasia13
1

 \huge \mathfrak {\color{navy}{here \: is \: the \: solution \: for \: your \: question}}  \\  \\ p(x) =  {x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1 \\  \mathbf \pink{zero \: of \: (x + 1) \: is \:  - 1} \\   \mathcal \green{p(x) = 0} \\  {( - 1)}^{4}  +  {( - 1)}^{3}  +  {( - 1)}^{2}  + ( - 1) + 1  \\ 1 + ( - 1) + 1  + ( - 1) + 1 \\  3 - 2 \\ 1 \\  \large \mathfrak \red{1\neq \:0 } \\  \large \mathfrak \purple{lhs \neq \: rhs} \\  \huge \mathfrak \pink \therefore \pink {(x + 1) \: is \: not \: a \: factor \: of \: p(x)} \\  \\ \huge  \bigstar\color{royalblue}{PLEASE  \: \:  MARK  \:  \: ME  \:  \: AS \:  \: } \\  \huge \color{royalblue}{ THE \:  \:  BRAINLIEST  \:  \: AND  \:  \:} \\  \huge \color{royalblue}{FOLLOW}  \color{black} \bigstar

Similar questions