Math, asked by naeemabbas479, 1 year ago

Determine x if the slope of the line joining the two points(4,x) (7,2)is 8/3

Answers

Answered by Yuichiro13
7
Heya User,

---> Slope = 8/3

=> Equation of line --> y = (8/3)x + C

Passing through point --> ( 7 , 2 )
=> ( 7 , 2 ) satisfies the Eqn.

=> 2 = (8/3)*7 + C
=> 6 = 56 + 3C
=> 3C = -50
=> C = ( - 50 / 3 )  √√ ^_^ Done

Now, Eqn. ---> 3y = 8x - 50

( 4 , x ) satisfies the eqn => 3'x' = 8(4) - 50
                                         => 3'x' = 32 - 50
                                         => 3'x' = -18
                                         => 'x' = -6

Hence, the value of 'x' = -6   ...... 0_0 And we're done .. :p
Answered by abdulmuqit365
0

Answer:

Step-by-step explanation:

Slope = 8/3

=> Equation of line --> y = (8/3)x + C

Passing through point --> ( 7 , 2 )

=> ( 7 , 2 ) satisfies the Eqn.

=> 2 = (8/3)*7 + C

=> 6 = 56 + 3C

=> 3C = -50

=> C = ( - 50 / 3 )  √√ ^_^ Done

Now, Eqn. ---> 3y = 8x - 50

( 4 , x ) satisfies the equation => 3'x' = 8(4) - 50

                                        => 3'x' = 32 - 50

                                        => 3'x' = -18

                                        => 'x' = -6

Hence, the value of 'x' = -6    0_0 And we're done .. :p

Similar questions