Math, asked by AKSHAYCHANDRA, 1 month ago

determine x³+x²+x+1 has x+1 a factor​

Answers

Answered by BladeGirl
1

Answer:

Ur answer:

 {x}^{3} +  {x}^{2}  + x + 1 \\ >  x + 1 = 0 \\ =  > x =  - 1 \\ putting \: the \: value \: in \: the \:equation \\  ({ - 1})^{3}  +  ({ - 1}^{2} ) + ( - 1) + 1 \\  =  ( - 1) + 1 - 1 + 1 \\  = 0

Yes, (x+1) is a factor of x³+x²+x+1.

Step-by-step explanation:

Hope it helps u!!Please mark me Brainliest

♛┈⛧•༶BladeGirl༶•⛧┈♛

Answered by udayanmazumder
0

let \\ p(x) =  {x}^{3}  +   {x}^{2}  + x + 1 \\ putting \: x + 1 =0   \\  \:  \:  \: x =  - 1 \\  \\ so \: now \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  p( - 1) =  ({ - 1}^{3})  + ({ - 1}^{2})  + ( - 1) + 1 \\  =  - 1 + 1 - 1 + 1 \\  = 0 \\  \\ then \: the \: remainder \: is \: 0 \: so \: x + 1 \: is \: the \: factor \: of \:  {x}^{3}  +  {x}^{2}  + x + 1

hope this helps you

Similar questions