determined k so that k²+4k+8, 2k²+3k+6, 3k²+4k+4 are three consecutive terms of A.P.
Answers
Answered by
7
GIVEN :-
- Three consecutive terms of AP are [ k² + 4k + 8 ] , [ 2k² + 3k + 6 ] and [ 3k² + 4k + 4 ]
TO FIND :-
- Value of 'k'.
SOLUTION :-
In an AP , Common Difference (d) is same throughout.
Common difference (d) = a(2) - a(1) = a(3) - a(2)
We have ,
- a(1) = k² + 4k + 8
- a(2) = 2k² + 3k + 6
- a(3) = 3k² + 4k + 4
Putting values , we get...
→ (2k² + 3k + 6) - (k² + 4k + 8)
ㅤㅤㅤㅤㅤ= (3k² + 4k + 4) - (2k² + 3k + 6)
→ 2k² + 3k + 6 - k² - 4k - 8
ㅤㅤㅤㅤㅤ= 3k² + 4k + 4 - 2k² - 3k - 6
→ 2k² - k² + 3k - 4k + 6 - 8
ㅤㅤㅤㅤㅤ= 3k² - 2k² + 4k - 3k + 4 - 6
→ k² - k - 2 = k² + k - 2
→ k² - k² - k - k - 2 + 2 = 0
→ -2k = 0
→ k = 0
Hence , value of k is 0.
★ LETS CHECK !
a(1) = k² + 4k + 8 = 8
a(2) = 2k² + 3k + 6 = 6
a(3) = 3k² + 4k + 4 = 4
As Common Difference is same throughout ,
a(3) - a(2) = a(2) - a(1)
Putting values ,
4 - 6 = 6 - 8
-2 = -2 (verified)
Similar questions