detrrmine if 3 is a root of the equation given below root over x square - 4 x + 3 + Root over x square minus 9 x is equal to root over 4 x square - 14 x + 16
Answers
Answered by
0
Step-by-step explanation:
3 is not a root of given equation.
Step-by-step explanation:
\begin{lgathered}Given \: equation \\\sqrt{x^{2}-4x+3}+\sqrt{x^{2}-9}\\=\sqrt{4x^{2}-14x+16}\end{lgathered}
Givenequation
x
2
−4x+3
+
x
2
−9
=
4x
2
−14x+16
Put x = 3 in the equation, we get
\begin{lgathered}\sqrt{3^{2}-4\times 3 +3}+\sqrt{3^{2}-9}\\=\sqrt{4\times 3^{2}-14\times 3+16}\end{lgathered}
3
2
−4×3+3
+
3
2
−9
=
4×3
2
−14×3+16
\begin{lgathered}\implies \sqrt{9-12+3}+\sqrt{9-9}\\=\sqrt{36-42+16}\end{lgathered}
⟹
9−12+3
+
9−9
=
36−42+16
\implies 0+0=\sqrt{52-42}⟹0+0=
52−42
\implies 0= \sqrt{10}\:(False)⟹0=
10
(False)
Therefore,
3 is not a root of given equation.
•••♪
Similar questions