Math, asked by shainagaba514p937dr, 10 months ago

di is the deviation of xi from assumed mean a. If mean = x+∑fidi / ∑fi, then x is

Answers

Answered by MaheswariS
8

\textbf{Given:}

\text{$d_i$ is the deviation of $x_i$ from assumed mean $A$ and Mean$=x+\dfrac{\Sigma\,f_i\,d_i}{\Sigma\,f_i}$}

\textbf{To find:}

\text{x}

\textbf{Solution:}

\text{Consider,}

d_1=x_1-A\;\implies\;x_1=d_1+A

d_2=x_2-A\;\implies\;x_2=d_2+A

.

.

.

d_n=x_n-A\;\implies\;x_n=d_n+A

\text{Now,}

\text{Mean}=\dfrac{\Sigma\,f_ix_i}{\Sigma\,f_i}

\text{Mean}=\dfrac{\Sigma\,f_i(d_i+A)}{\Sigma\,f_i}

\text{Mean}=\dfrac{\Sigma\,f_id_i+\Sigma\,f_i\,A}{\Sigma\,f_i}

\text{Mean}=\dfrac{\Sigma\,f_id_i+A\Sigma\,f_i}{\Sigma\,f_i}

\text{Mean}=\dfrac{\Sigma\,f_id_i}{\Sigma\,f_i}+\dfrac{A\Sigma\,f_i}{\Sigma\,f_i}

\text{Mean}=\dfrac{\Sigma\,f_id_i}{\Sigma\,f_i}+A

\implies\bf\text{Mean}=A+\dfrac{\Sigma\,f_id_i}{\Sigma\,f_i}

\text{Comparing with $\text{Mean}=x+\dfrac{\Sigma\,f_i\,d_i}{\Sigma\,f_i}$, we get}

x=A

\textbf{Answer:}

\textbf{The value of x is A}

Find more:

If x bar is mean of n observations x1 x2 x3 x4.............xn then find sigma { x - xbar}??

https://brainly.in/question/4296554

Similar questions