Math, asked by poojapandey4583, 3 months ago

Diagonal of a rhombus are 20cm and21cm respectively,then find the side of rhombus and its perimeter​

Answers

Answered by Anonymous
45

S O L U T I O N :

i. Let ABCD be the rhombus.

AC = 20 cm, BD = 21 cm

{\sf{A/Q\:=\; \dfrac{1}{2}\:AC\; ~~~ \bigg[Diagonals\; of\; rhombus\; bisect\:each\:other\bigg]}}

~~{\sf{\dfrac{1}{2}\:×\:20\:=\:10\:cm ~~~~~~~~~ (i)}}

\\

Also, BO

{\sf{\dfrac{1}{2}\:BD\; ~~~ \bigg[Diagonals\; of\; rhombus\; bisect\:each\:other\bigg]}}

~~{\sf{\dfrac{1}{2}\:×\:20\:=\; \dfrac{21}{2}\:cm ~~~~~~~~~ (ii)}}

\\

ii. in ∆AOB, \angleAOB = 90° {\sf{\bigg[Diagonals\: of\;a\: rhombus\:are\; perpendicular\;to\;each\; other\bigg]}}

\\

\thereforeAB = AO + BO {\sf{\bigg[Pythagoras\:theorem\bigg]}}

\\

{\sf{(10)^2\:+\; \bigg(\dfrac{21}{2}\bigg)^2 ~~~~~~ \bigg[From\:(i)\;and\:(ii)\bigg]}}

\\

{\sf{100\:+\; \dfrac{441}{4}}}

\\

{\sf{\dfrac{440\:+\:441}{4}}}

\\

\therefore{\sf{AB^2\:=\; \dfrac{841}{4}}}

\\

\therefore{\sf{AB\:=\; \sqrt\dfrac{841}{4}\; \bigg[Taking\; square\:root\:of\; both\;sides\bigg]}}

\\

~~~{\sf{\dfrac{29}{2}\:=\:14.5\:cm}}

\\

iii. Perimeter of ABCD

{\sf{4\:×\:AB\:=\:4\:×\:14.5\:=\:58\:cm}}

\\

Hence,

\therefore{\underline{\sf{The\:side\:and\: perimeter\: of\; the\; rhombus\:are\; \bf{14.5\:cm}\; \sf{and}\; \bf{58\:cm}\;\sf{respectively}.}}}

\\

~~~~\qquad\quad\therefore{\underline{\textsf{\textbf{Hence, Proved!}}}}

~~~~~~~~~~~~~~~ ____________________

Similar questions