Math, asked by Ramamoorthy474, 1 year ago

Diagonals AC and BD of a parallelogram ABCD intersect each other at O if OA=3cm and OD=2cm determine the length of AC and BD

Answers

Answered by MaheswariS
99

\underline{\textsf{Given:}}

\textsf{In parallelogram ABCD, }

\textsf{Diagonals AC and BD intersect at O and OA=3 cm, OD=2 cm}

\underline{\textsf{To find:}}

\textsf{Length of AC and BD}

\underline{\textsf{Solution:}}

\textsf{We know that,}

\textsf{"Diagonals of  parallelogram bisect each other"}

\implies\mathsf{OA=OC}\,\textsf{and}\,\mathsf{OB=OD}

\implies\textsf{OC=3 cm and OB= 2 cm}

\textsf{Now}

\mathsf{AC=OA+OC=3+3=6}\,\textsf{cm}

\mathsf{BD=OB+OD=2+2=4}\,\textsf{cm}

\underline{\textsf{Answer:}}

\textsf{Length of AC is 6 cm and}

\textsf{Length of BD is 4 cm}

Find more:

Show that thepoints A (0, 0), B(3, 0),

C(4, 1) and D(1, 1) form a parallelogram​

https://brainly.in/question/22269492

Answered by charancherry99
47

Step-by-step explanation:

Here, ABCD is a parallelogram and AC and BD are diagonals of parallelogram intersect each other at O.

OA=3cm and OD=2cm

We know that, diagonals of a parallelogram bisect each other.

∴ AO=OC and BO=OD

⇒ AC=2×OA=2×3cm=6cm

⇒ BD=2×OD=2×2cm=4cm

∴ The length of the diagonals AC and BD are 6cm and 4cm

Similar questions