Math, asked by Anonymous, 6 months ago

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that
ar(∆APB)×ar(∆CPD) =ar (∆APD)×ar(∆BPC)

Answers

Answered by Rubellite
278

Given :

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P.

To Prove :

\displaystyle{\sf{ar(∆APB) \times ar(∆CPD) =ar (∆APD) \times ar(∆BPC)}}

Construction :

From A to C , draw perpendiculars AE and CF respectively to BD.

Proof :

\displaystyle{\sf{ar(∆APB) \times ar(∆CPD)}}

:\Rightarrow{\sf{ \dfrac{(PB)(AE)}{2} \times \Bigg[ \dfrac{DP \times CF}{2} \Bigg]}}

\displaystyle{\sf{ \left| \bigg( Area\:of\:a\:∆\:= \frac{Base \times Corresponding\:altitude}{2} \bigg)}}

:\Rightarrow{\sf{ \dfrac{1}{4}(PB)(AE)(DP)(CF)\:\:\:\:\:......(1)}}

\displaystyle{\sf{ar(∆APD) \times ar(∆BPC)}}

:\Rightarrow{\sf{ \dfrac{(DP)(AE)}{2} \times \Bigg[ \dfrac{PB \times CF}{2} \Bigg]}}

:\Rightarrow{\sf{ \dfrac{1}{4}(PB)(AE)(DP)(CF)\:\:\:\:\:......(2)}}

From (1) and (2),

{\boxed{\sf{\red{ar(∆APB) \times ar(∆CPD) =ar (∆APD) \times ar(∆BPC)}}}}

__________________________

Attachments:

EliteSoul: Great
Answered by Anonymous
123

\large\underline\bold{ANSWER \huge{\red{\checkmark}}}

\large\underline\bold{GIVEN,}

\dashrightarrow ABCD\:is\:a\: quadrilateral\\ \dashrightarrow AC\:and\:BD\:are\:diagonals\\which\: interests\:at\:point\:p\\ \dashrightarrow let\:the\:height\:of\:\triangle\: APD\:be\:‘x’\\ \dashrightarrow and\:of\: \triangle BPC\:be\:y.

\large\underline\bold{TO\:PROVE,}

\dashrightarrow \large{ar(\triangle APB )\times ar \: (\triangle CPD) = ar(\triangle BPC ) \times ar (\triangle APD ) }

FORMULA IN USE,

\large{\boxed{\bf{\star\:\: area\:of\:\triangle= \dfrac{1}{2} \times b\times h\:\:\star }}}

\huge\underline\mathrm{\red{PROOF,}}

\therefore  using\:formula,

In ∆APD and ∆ BPC

\dashrightarrow Ar(\triangle APD)= \dfrac{1}{2}\times x\times DP\:---\boxed{1}

\dashrightarrow Ar(\triangle BPC)= \dfrac{1}{2}\times y\times BP\:--\boxed{2}

Now, in ∆ APD and ∆APB,

\dashrightarrow Ar(\triangle APB)= \dfrac{1}{2}\times x\times BP\:--\boxed{3}

\dashrightarrow Ar(\triangle APD)= \dfrac{1}{2}\times y\times DP\:--\boxed{4}

From eq [1], and [4]

\dashrightarrow we \:get\: \\ in\:\triangle APD \: \\ x=y \:--\boxed{5}

From eq[5] .We get,

\therefore \triangle BPC= \triangle APB\:---\boxed{6}

From eq [1],[2],[3],[4],[5],[6]. We get,

\rm{\boxed{\bf{ \star\:\:ar(\triangle APB )\times ar \: (\triangle CPD) = ar(\triangle BPC ) \times ar (\triangle APD )  \:\: \star}}}

\large\underline\bold{HENCE\:PROOVED\huge{\purple{\checkmark}},}

\pink{\text{NOTE:- FOR DIAGRAM REFER THE ATTACHMENT.}}

_______________


Brâiñlynêha: Awesome!!
prince5132: Nice !
Similar questions