Diagonals AC and BD of a quadrilateral ABCD intersect each other at P . Show that ar(∆APB)×ar(∆CPD)= ar(∆APD)×ar(∆BPC).
Answers
Step-by-step explanation:
Data: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P.
To Prove: ar.(△APB)×ar.(△CPD)=ar.(△APD)×ar.(△BPC)
Construction: Draw AM⊥DB,CN⊥DB
Proof: ar.(△APB)×ar.(△CPD)=
=(
2
1
×PB×AM)×(
2
1
×PD×CN)
=
4
1
×PB×AM×PD×CN....(i)
ar.(△APD)×ar.(△BPC)=
=(
2
1
×PD×AM)×(
2
1
×PB×CN)
=
4
1
×PD×AM×PB×CN....(ii)
From (i) and (ii)
ar.(△APB)×ar.(△CPD)=ar.(△APD)×ar.(△BPC)
Answer:
Data: Diagonals AC and BD of a quadrilateral ABCD intersect each other at P.
To Prove: ar.(△APB)×ar.(△CPD)=ar.(△APD)×ar.(△BPC)
Construction: Draw AM⊥DB,CN⊥DB
Proof: ar.(△APB)×ar.(△CPD)=
=(
2
1
×PB×AM)×(
2
1
×PD×CN)
=
4
1
×PB×AM×PD×CN....(i)
ar.(△APD)×ar.(△BPC)=
=(
2
1
×PD×AM)×(
2
1
×PB×CN)
=
4
1
×PD×AM×PB×CN....(ii)
From (i) and (ii)
ar.(△APB)×ar.(△CPD)=ar.(△APD)×ar.(△BPC)