diagonals AC and BD of a quadrilateral ABCD intersect each other at O prove that
➰AB + BC + CD + D A> AC + BD
➰AB + BC + CD + DA< 2(AC + BD)
Answers
Answered by
62
hey
Given:ABCD is a Quadrilateral
To prove :1)AB+BC+CD+DA>AC+BD
2)AB+BC+CD+DA<2(AC+BD)
PROOF: IN QUADRILATERAL ABCD,
IN triangle ABC, AB+BC>AC. ..1
TRIANGLE BCD, BC+CD>BD. ..2
TRIANGLE CDA,CD+DA>AC. ..3
TRIANGLE. DAB,DA+AB>BD. ..4
ON ADDING,(1) AND(2),
2(AB+BC+CD+DA)>2(AC+BD)
THUS,
AB+BC+CD+DA>AC+BD
2)
IN TRIANGLE OAB,OA+OB>AB. ...1
IN TRIANGLE OBC,OB+OC>BC. ...2
IN TRIANGLE OCD,OC+OD>CD ....3
IN TRIANGLE ODA,OD+OA>DA. ...4
ON ADDING THESS EQUATIONS
2(AC+BD)>AB+BC+CD+DA
THUS, AB+BC+CD+DA<2(AC+BD)
THANKS
JAY HIND
Given:ABCD is a Quadrilateral
To prove :1)AB+BC+CD+DA>AC+BD
2)AB+BC+CD+DA<2(AC+BD)
PROOF: IN QUADRILATERAL ABCD,
IN triangle ABC, AB+BC>AC. ..1
TRIANGLE BCD, BC+CD>BD. ..2
TRIANGLE CDA,CD+DA>AC. ..3
TRIANGLE. DAB,DA+AB>BD. ..4
ON ADDING,(1) AND(2),
2(AB+BC+CD+DA)>2(AC+BD)
THUS,
AB+BC+CD+DA>AC+BD
2)
IN TRIANGLE OAB,OA+OB>AB. ...1
IN TRIANGLE OBC,OB+OC>BC. ...2
IN TRIANGLE OCD,OC+OD>CD ....3
IN TRIANGLE ODA,OD+OA>DA. ...4
ON ADDING THESS EQUATIONS
2(AC+BD)>AB+BC+CD+DA
THUS, AB+BC+CD+DA<2(AC+BD)
THANKS
JAY HIND
Anonymous:
Yes
Answered by
17
Answer:
here's the answer
hope you understand my handwriting !!!
Attachments:
Similar questions