Math, asked by savitashingare04, 11 months ago

Diagonals of a rhombus are 20 cm and 21 cm respectively, then find the side of rhombus and it's perimeter

Answers

Answered by malarkodia
3

Step-by-step explanation:

diagonals divide each other equally and intersect at 90 degree

so lets take a triangle abc

so by p.t

              ab sq +bc sq =ac sq

              100 +110.25 =side sq

               side sq=14.5

           

      =

 so perimeter is 4*14.5

      that is 58

hope it helps

Answered by ShírIey
138

AnswEr:-

Perimeter of Rhombus = 58 cm.

Side of Rhombus = 14.5 cm

Step by Step Explanation:-

We know that Diagonals of the rhombus bisect each other at 90°.

\rule{150}3

By using Pythagoras theorem:-

\longrightarrow\sf\; Side^2 = 10^2 + 10.5^2

\longrightarrow\sf\; Side^2 = 100 + 100.25

\longrightarrow\sf\;  Side^2 = 210.25

\longrightarrow\large\boxed{\sf{\pink{ Side = 14.5}}}

Hence, The side of the Rhombus is 14.5 cm.

\rule{150}3

Formula of Perimeter of Rhombus:-

\longrightarrow\large\boxed{\sf{\red{ 4\times\; Side}}}

\longrightarrow\sf\; 4 \times \; 14.5

\longrightarrow\sf\; 58 cm

So, The perimeter of Rhombus is 58cm.

\rule{150}3

Similar questions