Diagram:-
in the diagram
EF=8cm
BD=6cm
DF=4cm
Find AB=?
Note:-
Go to brainly.in and see the diagram .
Answer only if you know
spam=strict actions will be taken.
Answers
Here in this question, concept of similarity of triangle as well as theorem of similarity of triangle is used. We are given a figure and we have to find a particular side. We can solve this question by using similarity criteria for triangles.
So let's do it!!
Consider, in ∆ABF and ∆CDF
∠DFC=∠DFC (Common in both triangles)
∠CDF= ∠ABF (Pair of corresponding angles)
Note→ A.A. is a criteria for similarity of triangle. We have several criteria for proving 2 triangles similar.
Now using theorem:
Theorem 1: The ratio of sides of similar triangle is always equal.
As ∆ABF and ∆CDF are similar:
So,
Now putting given values:
Now consider triangles, In ∆EFB and ∆CDB
∠CBD=∠CBD (Common in both triangles)
∠CDB=∠CFB (Pair of corresponding angles)
According to theorem 1:
Also,
By putting given values:
Now add equation (1) and (3)
Now solve it!
By transporting 8cm from LHS to RHS
Now put value of AB from equation (2.)
Put this value in equation (1)
Now, by solving it we get:
So the value of AB is 12cm.
Answer:
Diagram:-
\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(1,3)\qbezier(0,0)(0,0)(6,0)\qbezier(0,0)(0,0)(6,2)\qbezier(6,2)(6,2)(6,0)\qbezier(6,0)(6,0)(1,3)\qbezier(3.84,1.3)(3.8,0)(3.8,0)\put(-0.2,-0.2){\sf B}\put(0.5,3){\sf A}\put(6.2,-0.2){\sf F}\put(3.8,-0.4){\sf D}\put(3.8,1.6){\sf C}\put(6.2,2.2){\sf E}\end{picture}
in the diagram \sf \overline{AB} || \overline{CD}||\overline{EF}
AB
∣∣
CD
∣∣
EF
EF=8cm
BD=6cm
DF=4cm
Find AB=?
\begin{gathered}\\ \end{gathered}
Note:-
Go to brainly.in and see the diagram .
Answer only if you know
spam=strict actions will be taken.
Step-by-step explanation:
\Large{\underbrace{\underline{\sf{Understanding\; the\; Question}}}}
UnderstandingtheQuestion
Here in this question, concept of similarity of triangle as well as theorem of similarity of triangle is used. We are given a figure and we have to find a particular side. We can solve this question by using similarity criteria for triangles.
So let's do it!!
\rule{290}{1.5}
Consider, in ∆ABF and ∆CDF
∠DFC=∠DFC (Common in both triangles)
∠CDF= ∠ABF (Pair of corresponding angles)
\sf So,\triangle ABF\sim\triangle CDF \:(By\;AA)So,△ABF∼△CDF(ByAA)
Note→ A.A. is a criteria for similarity of triangle. We have several criteria for proving 2 triangles similar.
Now using theorem:
Theorem 1: The ratio of sides of similar triangle is always equal.
As ∆ABF and ∆CDF are similar:
\sf \longmapsto\dfrac{AB}{CD}=\dfrac{BF}{DF}=\dfrac{AF}{CF}⟼
CD
AB
=
DF
BF
=
CF
AF
So,
\sf\longmapsto \dfrac{AB}{CD}=\dfrac{BF}{DF}⟼
CD
AB
=
DF
BF
Now putting given values:
\sf\longmapsto \dfrac{AB}{CD}=\dfrac{BD+DF}{4cm}⟼
CD
AB
=
4cm
BD+DF
\sf\longmapsto \dfrac{AB}{CD}=\dfrac{6cm+4cm}{4cm}⟼
CD
AB
=
4cm
6cm+4cm
\sf\longmapsto\dfrac{AB}{CD}=\dfrac{10cm}{4cm}---(1.)⟼
CD
AB
=
4cm
10cm
−−−(1.)
\sf \longmapsto AB=\dfrac{10cm\times CD}{4cm}---(2.)⟼AB=
4cm
10cm×CD
−−−(2.)
\rule{290}{1.5}
Now consider triangles, In ∆EFB and ∆CDB
∠CBD=∠CBD (Common in both triangles)
∠CDB=∠CFB (Pair of corresponding angles)
\sf So, \triangle EFB \sim \triangle EDB\:(By\:A.A.)So,△EFB∼△EDB(ByA.A.)
According to theorem 1:
\sf\longmapsto\displaystyle\frac{EF}{CD} =\frac{FB}{DB} =\frac{EB}{CB}⟼
CD
EF
=
DB
FB
=
CB
EB
Also,
\sf \longmapsto\displaystyle\frac{EF}{CD} =\frac{FB}{DB}⟼
CD
EF
=
DB
FB
By putting given values:
\sf \longmapsto\displaystyle\frac{8cm}{CD} =\frac{BD+DF}{6cm}⟼
CD
8cm
=
6cm
BD+DF
\sf \longmapsto\displaystyle\frac{8cm}{CD} =\frac{6cm+4cm}{6cm}⟼
CD
8cm
=
6cm
6cm+4cm
\sf\longmapsto\displaystyle\frac{8cm}{CD} =\frac{10cm}{6cm}---(3.)⟼
CD
8cm
=
6cm
10cm
−−−(3.)
\rule{290}{1.5}
Now add equation (1) and (3)
\sf \longmapsto\dfrac{AB}{CD}+\dfrac{8cm}{CD}=\dfrac{10cm}{4cm}+\dfrac{10cm}{6cm}⟼
CD
AB
+
CD
8cm
=
4cm
10cm
+
6cm
10cm
Now solve it!
\sf\longmapsto \dfrac{AB+8cm}{CD}=\dfrac{30cm+20cm}{12cm}⟼
CD
AB+8cm
=
12cm
30cm+20cm
\sf \longmapsto\dfrac{AB+8cm}{CD}=\dfrac{50cm}{12cm}⟼
CD
AB+8cm
=
12cm
50cm
By transporting 8cm from LHS to RHS
\sf\longmapsto AB+8cm=\dfrac{50cm\times CD}{12cm}⟼AB+8cm=
12cm
50cm×CD
Now put value of AB from equation (2.)
\sf\longmapsto\bigg[ \dfrac{10\times CD}{4cm}\bigg]+8cm=\dfrac{50cm\times CD}{12cm}⟼[
4cm
10×CD
]+8cm=
12cm
50cm×CD
\sf \longmapsto\dfrac{ 10CD}{4cm}+8cm=\dfrac{50cm\times CD}{12cm}⟼
4cm
10CD
+8cm=
12cm
50cm×CD
\sf \longmapsto 8cm=\dfrac{50CD}{12cm}-\dfrac{10CD}{4cm}⟼8cm=
12cm
50CD
−
4cm
10CD
\sf\longmapsto 8cm=\dfrac{50CD-30CD}{12cm}⟼8cm=
12cm
50CD−30CD
\sf\longmapsto 8cm=\dfrac{20CD}{12cm}⟼8cm=
12cm
20CD
\sf\longmapsto 8cm\times\dfrac{12cm}{20cm}=CD⟼8cm×
20cm
12cm
=CD
\sf\longmapsto \dfrac{24cm}{5cm}=CD⟼
5cm
24cm
=CD
Put this value in equation (1)
\rule{290}{1.5}
\sf\longmapsto\dfrac{AB}{CD}=\dfrac{10cm}{4cm}⟼
CD
AB
=
4cm
10cm
\sf\longmapsto\dfrac{AB}{\dfrac{24cm}{5cm}}=\dfrac{10cm}{4cm}⟼
5cm
24cm
AB
=
4cm
10cm
\sf\longmapsto\dfrac{AB\times 5cm}{24cm}=\dfrac{10cm}{4cm}⟼
24cm
AB×5cm
=
4cm
10cm
\sf\longmapsto AB=\dfrac{10cm}{4cm}\times\dfrac{24cm}{5cm}⟼AB=
4cm
10cm
×
5cm
24cm
Now, by solving it we get:
\sf\longmapsto AB=12cm⟼AB=12cm
So the value of AB is 12cm.