Math, asked by jesal86, 5 months ago

diameter of a cylinder tank is 7 m. if 385 cu. m. water is filled in the tank, then what will be the height of water in the tank?​

Answers

Answered by Anonymous
9

GiveN:-

Diameter of a cylinder tank is 7 m. if 385 cu. m. water is filled in the tank.

To FinD:-

Then what will be the height of water in the tank?

SolutioN:-

  • Let the height of the tank be h.

We know that,

\large{\green{\underline{\boxed{\bf{Volume\:of\:Cylinder=\pi\:r^2h}}}}}

where,

  • π is 22/7
  • r is radius = diameter/2 = 7/2 m.
  • h is height = ?
  • Volume = 385 m³

Putting the values,

\large\implies{\sf{385=\dfrac{22}{7}\times\left(\dfrac{7}{2}\right)^2\times\:h}}

\large\implies{\sf{385=\dfrac{22}{7}\times\dfrac{7}{2}\times\dfrac{7}{2}\times\:h}}

\large\implies{\sf{385=\dfrac{\cancel{22}}{\cancel{7}}\times\dfrac{\cancel{7}}{\cancel{2}}\times\dfrac{7}{2}\times\:h}}

\large\implies{\sf{385=11\times\dfrac{7}{2}\times\:h}}

\large\implies{\sf{385=\dfrac{11\times7}{2}\times\:h}}

\large\implies{\sf{385=\dfrac{77}{2}\times\:h}}

\large\implies{\sf{\dfrac{385\times2}{77}=h}}

\large\implies{\sf{\dfrac{770}{77}=h}}

\large\implies{\sf{\dfrac{\cancel{770}}{\cancel{77}}=h}}

\large\implies{\sf{10=h}}

\large\therefore\boxed{\bf{Height=10\:m.}}

The height of the tank is 10 m.

Answered by Aɾꜱɦ
27

Given Information:

  • The diameter of a cylinder tank = 7 m

  • If 385 m³ water is filled in the tank.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Need To Find Out:

  • The required height of water in the tank = ?

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

\sf \: Radius =  \dfrac{Diameter}{2}  \\  \\  \sf \: Radius = \frac{7}{2 \: }  \: m\\\\

\underline{  \green\bigstar \bf  \: Formula \: used \: here:  - }\\

\underline{\boxed{\sf{ \red{Volume \: of \: the \: cylinder =  \pi \: r {}^{2}  \times height}}}} \:  \pink \bigstar\\\\

\underline{  \green\bigstar \bf  \: Putting \: the \: values:  -}   \\  \\ :  \implies \sf \: 385 =  \dfrac{22}{7}  \times  \bigg( \dfrac{7}{2}  \bigg) {}^{2}  \times height \\  \\ :  \implies \sf \: 385 =  \dfrac{22}{7}  \times  \dfrac{7}{2}  \times  \dfrac{7}{2}  \times height \\  \\ :  \implies \sf \: 385 = 11 \times  \dfrac{7}{2}  \times height \\  \\ :  \implies \sf \: 385 =  \dfrac{77}{2}  \times height \\  \\ :  \implies \sf \: Height =  \dfrac{385 \times 2}{77}  \\  \\ :  \implies \sf \:Height =  \cancel\dfrac{770}{77}  \\  \\  :  \implies \sf \: \boxed{ \bf \: Height =  10 \: m} \:   \pink\bigstar\\  \\

\therefore  \underline {\sf  \purple{\: The\: required \: height \: of \: the \: tank =   \underline\bold{ \red{10 \: m}}}} \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

Similar questions