Math, asked by spacemaster7, 10 months ago

Diameter of a sphere is 3 cm and mass is 200 g. Find the density in S. I. units.​

Answers

Answered by arhamabbasi
0

Step-by-step explanation:

density=mass×volume

we have

diameter of sphere=3 cm

radius =1.5 cm

mass=200 g

so,

volume of sphere =4 \div 3\pir {r}^{3}

density =4/3×22/7×1.5×1.5×1.5 × 200

after solving

we get 2828.572

so the density=2828.572gm.cm

3

Answered by TheBrainlyWizard
73

\bf{\underline{\underline{Given\: :}}}

\mathsf{\bigstar\: Diameter\:of\: a\: sphere = 3\:cm}\\

\mathsf{\bigstar\: Radius\:of\: a\: sphere = \frac{3}{2}  = 1.5 \:cm}\\

\mathsf{\bigstar\: Mass = 200\:g}\\ \\

\bf{\underline{\underline{To\: find\: :}}}

\mathsf{\bigstar\: Density}\\ \\

\bf{\underline{\underline{Solution\: :}}}\\

\mathtt{\diamond\:\: Volume\: of\: sphere = \frac{4}{3}\pi r^{3}}\\

\mathtt{\implies\: \frac{4}{3} × \frac{22}{7} × 1.5 × 1.5 × 1.5\: cm^{3}}\\

\mathtt{\implies\: \frac{4}{3} × \frac{22}{7} × 1.5 × 1.5 × 1.5\: cm^{3}}\\

\mathtt{\implies\: \frac{99}{7} \: cm^{3} }\\

\mathtt{\implies\: 14.14\: cm^{3}}\\ \\

\mathtt{\diamond\:\: Density = \frac{Mass}{Volume}}\\

\mathtt{\implies\: \frac{200\: g}{14.14\: cm^{3}}}\\

\mathtt{\implies\: \frac{200 × 100\: g}{1414\: cm^{3}}}\\

\fbox{\Large{\mathtt{\green{\implies\: 14.14 \: g/cm^{3}}}}}\\

∴ Density of the spherical object = 14.14 g/cm³

Similar questions