Physics, asked by bestmagician11, 5 months ago

diferentite sin 3x with respect to x​

Answers

Answered by Anonymous
144

\sf \dfrac{d}{dx} sin^3 x

  • use chain rule,

\sf 3 = \dfrac{d}{dx} sin(x) \times sin^2 x

  • again use chain rule,

\sf = cos x \dfrac{d}{dx} x \ 3 \ sin^2 x

the derivative of x is 1

\sf = 1 \times 3 \ cos x \ sin^2 x

\sf = 3 \ cos x \ sin^2 x

know more!

differential equation Identities

\boxed{\boxed{\begin{minipage}{5cm}\displaystyle\circ\sf\;\dfrac{d}{dx}(sin\;x)=cosx \\\\ \circ \;\dfrac{d}{dx}(cos\;x) = -sinx \\\\ \circ \; \dfrac{d}{dx}(tan\;x) = sec^{2}x \\\\ \circ\; \dfrac{d}{dx}(cot\;x) = -csc^{2}x \\\\ \circ \; \dfrac{d}{dx}(sec\;x) = secx \cdot tanx \\\\ \circ \; \dfrac{d}{dx}(csc\;x) = -cscx \cdot cotx \\\\ \circ\; \dfrac{d}{dx}(sinh\;x)=coshx \\\\ \circ\; \dfrac{d}{dx}(cosh\;x)= sinhx \\\\ \circ\;\dfrac{d}{dx}(tanh\;x)=sech^{2}h \\\\ \circ\;\dfrac{d}{dx}(coth\;x)=-csch^{2}x \\\\ \circ\;\dfrac{d}{dx}(sech\;x) =-sechx \cdot tanhx \\\\ \circ\;\dfrac{d}{dx}(csch\;x) = -cschx \cdot cothx\end{minipage}}}

for handwritten notes for differential equations, refer to Attachment.

if you're unable to see differential equations identities, visit https://brainly.in/question/31780123 on any browser.

Attachments:

Seafairy: Fabulous job :)♡
Anonymous: Thnx ♡
Seafairy: your welcome :)♡
Anonymous: :)
Seafairy: (:
Answered by SugarCrash
74

‌Answer :

  • Derivative of sin 3x with respect to x is 3cos3x.
  • Derivative of sin³x with respect to x is 3sin²x cosx.

Solution :

‌➽ Differentiation of sin3x with respect to x

\large\bf \blue{\underbrace{\red{Method \:1}}}:

‌Using First principle of Derivative.

 f'(x) = \displaystyle{\lim_{h\to 0}}\frac{f(x+h)-f(x)}{h}

‌Let f(x) = sin3x. Then

 f'(x) = \displaystyle{\lim_{h\to 0}}\frac{sin3(x+h)-sin3(x)}{h} \\\\ \:\:\: = \displaystyle{\lim_{h\to 0}} \frac{sin(3x+3h)-sin3x}{h}

\red\bigstar\boxed{\sf sin x - sin y = 2cos \frac{x+y}{2}sin \frac{x-y}{2}}

‌Applying this formula here, we got :

\sf =  \displaystyle{\lim_{h\to 0}}\frac{2cos\frac{(3x+3h+3x)}{2} sin \frac{(\cancel{3x}+3h\:\:\cancel{-3x} )}{2}}{h} \\\\ =  \sf\displaystyle{\lim_{h\to 0}}\frac{2cos\frac{(6x+3h)}{2} sin \frac{3h }{2}}{h} \\\\ \sf = \displaystyle{\lim_{h\to 0}}\:\frac{2cos(3x + \frac{3h}{2}) sin \frac{3h }{2}}{h}

‌Multiplying and dividing by 3/2

 \sf = \displaystyle{\lim_{h\to 0}}\frac{2cos(3x + \frac{3h}{2}) sin \frac{3h }{2}\times \red{\frac{3}{2}}}{h\times \red{\frac{3}{2}}}\\

‌We know that,

 \sf \blue{\bigstar} \boxed{\color{red} \displaystyle{\lim_{h\to 0}}\:\sf\frac{sin x}{x}= 1}

 \sf = \displaystyle{\lim_{h\to 0}}\sf\frac{2cos(3x + \frac{3h}{2}) \blue{sin \frac{3h }{2}} \times \frac{3}{2}}{\blue{\frac{3}{2}h}}\\

 \sf Putting \:   \green{ \displaystyle{\lim_{h\to 0}}\:\frac{sin \frac{3h}{2}}{\frac{3h}{2}}= 1}

\sf  \displaystyle{\lim_{h\to 0}}\:\:\sf \cancel{2}cos (3x + \frac{3h}{2}) \times \frac{3}{\cancel{2}} \\\\ \sf  \displaystyle{\lim_{h\to 0}} \sf\:\:3cos (3x + \frac{3h}{2})

‌Putting h = 0

 \sf = 3cos (3x + \frac{3\times (0)}{2}) \\ \\ \large\implies \boxed{\sf 3cos (3x )}

‌━━━━━━━━━━━━━━━━━

\large\bf \blue{\underbrace{\red{Method\: 2}}}:

‌Chain rule :

‌According to chain rule :

‌Derivative of F(x) is F'(x)

‌F'(x) = f'(g(x)).g'(x)

‌Here, f(x) = sin(3x) and g(x) = 3x

‌ = f'(g(x)).g'(x)

‌= (sin(3x))' .(3x)'

‌= cos 3x . 3

‌= 3cos 3x

Hence,

Derivative of sin 3x with respect to x is 3cos 3x.

‌━━━━━━━━━━━━━━━━━━━━━

‌➽ Differentiation of sin³x with respect to x

‌Using chain rule :

‌Let y = sin³x

\sf \dfrac{d}{dx}sin^3x \times \dfrac{d}{dx}sin x

‌We know that,

\sf \: Derivative \: of \:\boxed{\sf \color{red} x^n = n.x^{n-1}}

 \sf \: Derivative \: of \:\boxed{\sf \color{red} sin x = cos x}

‌Applying this here, we got :

\sf 3sin^{3-1} \times cos x \\ \\ \implies\sf 3sin^2 x cos x

‌Hence,

Derivative of sin³x with respect to x is 3sin²x cosx.

{\fcolorbox{red}{blue}{\orange{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: SugarCrash\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:}}} 

Similar questions