Math, asked by lavanyauday1023, 1 day ago

Diffentiate Log(e^x/e) with respective to x

Answers

Answered by Anonymous
6

Answer:

1

Step-by-step explanation:

Function we are given to differentiate is,

 \longrightarrow  f(x) = \log _e \left(\dfrac{ {e}^{x} }{e} \right)

Now, we will be using the following property of logarithm function.

  • \red{  \boxed{\log \left( \frac{a}{b} \right ) =  \log(a) -  \log(b)}}
  •  \red{\boxed{ \log_x(x) = 1}}
  • \red{\boxed{\log( {y}^{x} ) =x \log(y)}}

Therefore we get:

{ \longrightarrow  f(x) = \log _e \left( {e}^{x} \right)  -  \log_e(e)}

{ \longrightarrow  f(x) =x \log _e \left( {e} \right)  - 1}

{ \longrightarrow  f(x) =x (1)  - 1}

{ \longrightarrow  f(x) =x  - 1}

Now differentiating both sides with respect to x.

{ \longrightarrow  f'(x) = \dfrac{d}{dx}(x  - 1)}

{ \longrightarrow  f'(x) = \dfrac{d}{dx}(x ) -  \dfrac{d}{dx}(1)}

Now, we will use formulas of derivative:

  •  \blue{\boxed{ \frac{d}{dx}( {x}^{n}) = n {x}^{n - 1}  }}
  • \blue{ \boxed{ \frac{d}{dx}({ \sf{constant}}) =0 }}

{ \longrightarrow  f'(x) = 1 - 0}

\longrightarrow  f'(x) = 1

Therefore the required answer is:

 \underline{ \boxed{ \frac{d}{dx} \: \log_e \left( \frac{ {e}^{x} }{e}  \right) = 1}}

Similar questions