Math, asked by bhartirohilla479, 10 months ago

differenation of √x2-2ax/a2-2ab

Answers

Answered by alkasurin37
1

Step-by-step explanation:

your answer is pinned here

Attachments:
Answered by ushmagaur
5

Question: Find the differentiation of the function: \frac{\sqrt{x^2-2ax} }{a^2-2ab}.

Answer:

The value of the differentiation of the function \frac{\sqrt{x^2-2ax} }{a^2-2ab} is \frac{x-a}{(a^2-2ab)\sqrt{x^2-2ax} }.

Step-by-step explanation:

Differentiation is the process rate of change in function with respect to the specified variable

Recall the Chain Rule,

\frac{d}{dx}f(g(x)) = f'(g(x))\cdot g'(x), where f and g are differentiable functions.

Consider the function as follows:

y=\frac{\sqrt{x^2-2ax} }{a^2-2ab}

Differentiate both the sides with respect to x as follows:

\frac{dy}{dx}= \frac{d}{dx}\left(\frac{\sqrt{x^2-2ax} }{a^2-2ab} \right)

Notice that the function in the denominator is independent of x or a constant function. So, take the function (a^2-2ab) out.

\frac{dy}{dx}=\frac{1}{{a^2-2ab}} \left[  \frac{d}{dx}\left(\sqrt{x^2-2ax} } \right)\right]

Using chain rule, differentiate the function as follows:

\frac{dy}{dx}=\frac{1}{{a^2-2ab}} \left[  \left(\frac{1}{2\sqrt{x^2-2ax} } \right)\cdot\frac{d}{dx}(x^2-2ax) \right] (Since \frac{d}{dx}(\sqrt{x})=\frac{1}{2\sqrt{x} })

\frac{dy}{dx}=\frac{1}{{a^2-2ab}}\left(\frac{1}{2\sqrt{x^2-2ax} } \right) \cdot\frac{d}{dx}(x^2-2ax)

Further, simplify as follows:

\frac{dy}{dx}=\frac{1}{{a^2-2ab}}\left(\frac{1}{2\sqrt{x^2-2ax} } \right) \cdot(2x-2a) (Since \frac{d}{dx}(x^n)=x^{n-1})

\frac{dy}{dx}=\frac{2(x-a)}{2(a^2-2ab)\sqrt{x^2-2ax} }

\frac{dy}{dx}=\frac{x-a}{(a^2-2ab)\sqrt{x^2-2ax} }

Therefore, the value of the differentiation of the function \frac{\sqrt{x^2-2ax} }{a^2-2ab} is \frac{x-a}{(a^2-2ab)\sqrt{x^2-2ax} }.

#SPJ2

Similar questions