Difference between bone and blood
Answers
Answered by
2
hey mate here is your answer
The mechanisms of bone and blood formation have traditionally been viewed as distinct, unrelated processes, but compelling evidence suggests that they are intertwined. Based on observations that hematopoietic precursors reside close to endosteal surfaces, it was hypothesized that osteoblasts play a central role in hematopoiesis, and it has been shown that osteoblasts produce many factors essential for the survival, renewal, and maturation of hematopoietic stem cells (HSCs). Preceding these observations are studies demonstrating that the disruption or perturbation of normal osteoblastic function has a profound and central role in defining the operational structure of the HSC niche. These observations provide a glimpse of the dimensions and ramifications of HSC-osteoblast interactions. Although more research is required to secure a broader grasp of the molecular mechanisms that govern blood and bone biology, the central role for osteoblasts in hematopoietic stem cell regulation is reviewed herein from the perspectives of (1) historical context; (2) the role of the osteoblast in supporting stem cell survival, proliferation, and maintenance; (3) the participation, if any, of osteoblasts in the creation of a stem cell niche; (4) the molecules that mediate HSC-osteoblast interactions; (5) the role of osteoblasts in stem cell transplantation; and (6) possible future directions for investigation.
Hope it will help you
The mechanisms of bone and blood formation have traditionally been viewed as distinct, unrelated processes, but compelling evidence suggests that they are intertwined. Based on observations that hematopoietic precursors reside close to endosteal surfaces, it was hypothesized that osteoblasts play a central role in hematopoiesis, and it has been shown that osteoblasts produce many factors essential for the survival, renewal, and maturation of hematopoietic stem cells (HSCs). Preceding these observations are studies demonstrating that the disruption or perturbation of normal osteoblastic function has a profound and central role in defining the operational structure of the HSC niche. These observations provide a glimpse of the dimensions and ramifications of HSC-osteoblast interactions. Although more research is required to secure a broader grasp of the molecular mechanisms that govern blood and bone biology, the central role for osteoblasts in hematopoietic stem cell regulation is reviewed herein from the perspectives of (1) historical context; (2) the role of the osteoblast in supporting stem cell survival, proliferation, and maintenance; (3) the participation, if any, of osteoblasts in the creation of a stem cell niche; (4) the molecules that mediate HSC-osteoblast interactions; (5) the role of osteoblasts in stem cell transplantation; and (6) possible future directions for investigation.
Hope it will help you
Gargihazra:
Bone marrow is the spongy tissue inside your bones that produces bloodstem cells—the cells in your body that produce red and white blood cells, as well as platelets. These blood stem cells also exist in your bloodstream, where they are called peripheral bloodstem cells
Answered by
4
bone is the hardest element present in our body it helps us to make motions .
and blood is a red liquid connective tissue which flows in our nerves
and blood is a red liquid connective tissue which flows in our nerves
Similar questions