Science, asked by pemnorbu6514, 1 year ago

Difference between gamma process and gamma distribution

Answers

Answered by jk1520834
0

Answer:

gamma process is a random process with independent gamma distributed increments. Often written as {\displaystyle \Gamma (t;\gamma ,\lambda )} \Gamma (t;\gamma ,\lambda ), it is a pure-jump increasing Lévy process with intensity measure {\displaystyle \nu (x)=\gamma x^{-1}\exp(-\lambda x),} {\displaystyle \nu (x)=\gamma x^{-1}\exp(-\lambda x),} for positive {\displaystyle x} x. Thus jumps whose size lies in the interval {\displaystyle [x,x+dx)} {\displaystyle [x,x+dx)} occur as a Poisson process with intensity {\displaystyle \nu (x)dx.} \nu (x)dx. The parameter {\displaystyle \gamma } \gamma controls the rate of jump arrivals and the scaling parameter {\displaystyle \lambda } \lambda inversely controls the jump size. It is assumed that the process starts from a value 0 at t=0.

The gamma process is sometimes also parameterised in terms of the mean ( {\displaystyle \mu } \mu ) and variance ( {\displaystyle v} v) of the increase per unit time, which is equivalent to {\displaystyle \gamma =\mu ^{2}/v} \gamma =\mu ^{2}/v and {\displaystyle \lambda =\mu /v} \lambda =\mu /v.

Explanation:

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are three different parametrizations in common use:

With a shape parameter k and a scale parameter θ.

With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter.

With a shape parameter k and a mean parameter μ = kθ = α/β.

Gamma

Probability density function

Probability density plots of gamma distributions

Cumulative distribution function

Cumulative distribution plots of gamma distributions

Parameters

k > 0 shape

θ > 0 scale

α > 0 shape

β > 0 rate

Support

{\displaystyle x\in (0,\infty )} x \in (0, \infty)

{\displaystyle x\in (0,\infty )} x \in (0, \infty)

PDF

{\displaystyle {\frac {1}{\Gamma (k)\theta ^{k}}}x^{k-1}e^{-{\frac {x}{\theta }}}} {\displaystyle {\frac {1}{\Gamma (k)\theta ^{k}}}x^{k-1}e^{-{\frac {x}{\theta }}}}

{\displaystyle {\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}x^{\alpha -1}e^{-\beta x}} {\displaystyle {\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}x^{\alpha -1}e^{-\beta x}}

CDF

{\displaystyle {\frac {1}{\Gamma (k)}}\gamma \left(k,{\frac {x}{\theta }}\right)} {\displaystyle {\frac {1}{\Gamma (k)}}\gamma \left(k,{\frac {x}{\theta }}\right)}

{\displaystyle {\frac {1}{\Gamma (\alpha )}}\gamma (\alpha ,\beta x)} {\displaystyle {\frac {1}{\Gamma (\alpha )}}\gamma (\alpha ,\beta x)}

Mean

{\displaystyle k\theta } {\displaystyle k\theta }

{\displaystyle {\frac {\alpha }{\beta }}} {\frac {\alpha }{\beta }}

Median

No simple closed form

No simple closed form

Mode

{\displaystyle (k-1)\theta {\text{ for }}k\geq 1} {\displaystyle (k-1)\theta {\text{ for }}k\geq 1}

{\displaystyle {\frac {\alpha -1}{\beta }}{\text{ for }}\alpha \geq 1} {\displaystyle {\frac {\alpha -1}{\beta }}{\text{ for }}\alpha \geq 1}

Variance

{\displaystyle k\theta ^{2}} {\displaystyle k\theta ^{2}}

{\displaystyle {\frac {\alpha }{\beta ^{2}}}} {\displaystyle {\frac {\alpha }{\beta ^{2}}}}

Skewness

{\displaystyle {\frac {2}{\sqrt {k}}}} {\displaystyle {\frac {2}{\sqrt {k}}}}

{\displaystyle {\frac {2}{\sqrt {\alpha }}}} {\displaystyle {\frac {2}{\sqrt {\alpha }}}}

Ex. kurtosis

{\displaystyle {\frac {6}{k}}} {\displaystyle {\frac {6}{k}}}

{\displaystyle {\frac {6}{\alpha }}} {\displaystyle {\frac {6}{\alpha }}}

Entropy

{\displaystyle {\begin{aligned}k&+\ln \theta +\ln \Gamma (k)\\&+(1-k)\psi (k)\end{aligned}}} {\displaystyle {\begin{aligned}k&+\ln \theta +\ln \Gamma (k)\\&+(1-k)\psi (k)\end{aligned}}}

{\displaystyle {\begin{aligned}\alpha &-\ln \beta +\ln \Gamma (\alpha )\\&+(1-\alpha )\psi (\alpha )\end{aligned}}} {\displaystyle {\begin{aligned}\alpha &-\ln \beta +\ln \Gamma (\alpha )\\&+(1-\alpha )\psi (\alpha )\end{aligned}}}

MGF

{\displaystyle (1-\theta t)^{-k}{\text{ for }}t<{\frac {1}{\theta }}} {\displaystyle (1-\theta t)^{-k}{\text{ for }}t<{\frac {1}{\theta }}}

{\displaystyle \left(1-{\frac {t}{\beta }}\right)^{-\alpha }{\text{ for }}t<\beta } {\displaystyle \left(1-{\frac {t}{\beta }}\right)^{-\alpha }{\text{ for }}t<\beta }

CF

{\displaystyle (1-\theta it)^{-k}} {\displaystyle (1-\theta it)^{-k}}

{\displaystyle \left(1-{\frac {it}{\beta }}\right)^{-\alpha }} {\displaystyle \left(1-{\frac {it}{\beta }}\right)^{-\alpha }}

In each of these three forms, both parameters are positive real numbers.

The gamma distribution is the maximum entropy probability distribution (both with respect to a uniform base measure and with respect to a 1/x base measure) for a random variable X for which E[X] = kθ = α/β is fixed and greater than zero, and E[ln(X)] = ψ(k) + ln(θ) = ψ(α) − ln(β) is fixed (ψ is the digamma function).[1]

Answered by arekatlarb
0

Answer:

A gamma process is a random process with independent gamma distributed increments

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are three different parametrizations in common use:

   With a shape parameter k and a scale parameter θ.

   With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate parameter.

   With a shape parameter k and a mean parameter μ = kθ = α/β.

In each of these three forms, both parameters are positive real numbers.

The gamma distribution is the maximum entropy probability distribution (both with respect to a uniform base measure and with respect to a 1/x base measure) for a random variable X for which E[X] = kθ = α/β is fixed and greater than zero, and E[ln(X)] = ψ(k) + ln(θ) = ψ(α) − ln(β) is fixed (ψ is the digamma function).[1]

Similar questions